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INTRODUCTION

To begin, this first Chapter will serve as an introduction to fractur-
ing problems. A brief outline of the process, the main challenges and
ideas, as well as their real life significance are outlined in Section
1.1. The existing solutions for single fracture problems are reviewed
in Section 1.2, and those for advanced multifracturing problems fol-
low in Section 1.4. The text presented here is intended to provide an
overview of methods and important results existing in the literature,
and to put the next Chapters in the appropriate context, before the
main objectives are presented in Section 1.4
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INTRODUCTION

1.1 INTRODUCTION TO HYDROFRACTURING

Lets begin with a brief explanation of what hydrofracturing is, and
why it was created. Natural gas and oil have been the main fossil fuels
in use for the past century. These were initially extracted from conven-
tional deposits, underground pockets of trapped hydrocarbons. Fig-
ure 1 shows various types of oil and gas reservoirs, where examples
of conventional gas and oil deposits are shown. These deposits were
relatively easy to access; when a drill was rigged and a hole bored,
the pressure would often force a violate burst of stored fossil fuel. A
very accurate (but over dramatic) cinematization of those early days
of the oil industry could even be seen in a number of Hollywood
productions [1]. In recent history there are still examples of oil and
gas uncontrollably forcing its way to the surface: Kuwait 1991, Gulf
of Mexico 2010 or Nefteyugansk 2015, to list just a few major inci-
dents. It could be mistakenly believed that extraction of liquid fossil
fuels is just about capturing this uncontrollable flow of a free natural
resource.

Unfortunately, in reality oil and gas acquisition is a complex multi-
physics problem. In order to demonstrate the overall complexity, lets
begin by introducing pressure, porosity and permeability. The deeper
underground we go the higher the formation pressure; at depths of
a few kilometers the weight of the above material will add up to a
multitude of the atmospheric pressure. Porosity is a measure of how
much of a rock is open space, a proportion of pores to solid matter.
These pores might be filled with hydrocarbonate fluid, even at these
great depths. Permeability is a measure of the ease with which a fluid
(oil or gas) can move through a porous rock. A conventional reservoir
would therefore be made of a filled porous rock, such as sandstone,
covered by an impermeable rock layer. A drilled well would create
a path that would direct a pressure driven viscous flow of oil or gas
to the surface, which could be modeled by Darcy’s Law [74]. These
type of reservoirs are still operational, and contribute the major part
of world oil and gas production, although many are now depleted or
running dry.
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Figure 1: Schematic geology of natural gas resources (source [99])
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Figure 2: Oil production in USA throughout past century (source [101])

The output of conventional oil and gas fields could have been de-
scribed by the Hubbert Curve [34], a model that assumes a peak in
production followed by a steady decline. In the US (see Figure 2)
these maximum production peaks appeared to occur in the 1970s.
Then, as known techniques for hydrocarbons extraction were prov-
ing to be insufficient, efforts to find new ways of obtaining oil were
made. The first pioneering papers on the topic of hydrofracturing
[20, 30, 33, 35, 39, 70, 76, 87] were published during that era of peek
production time, as the industry realized the need to use new, uncon-
ventional, methods for hydrocarbon recovery to meet the growing

supply.
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1.1 INTRODUCTION TO HYDROFRACTURING

In its broadest definition, hydraulic fracturing refers to the problem
of a fluid driven fracture propagating in a brittle medium. It is a natu-
rally occurring process observable in the formation of magma dykes
[81, 58, 59] or the subglacial drainage of water [91]. The possible ap-
plications go beyond the petroleum industry: disposal of waste drill
cuttings underground [67], exploitation of geothermal reservoirs [77]
or extraction of coalbeded methane. Hydraulic fracturing is not the
only reservoir stimulation method available, some other techniques
involve washing away remaining fossil fuels with specially prepared
foam [69]. A typical hydrofracturing fracturing job, as shown in Fig-
ure 3, would have the following stages:

¢ The drilling of a vertical well, or preparation of an existing one if
stimulating depleted reservoir. The well walls must be prepared
to withstand massive pressures without unanticipated leakage
into the ground waters;

* The drilling of a long horizontal section that spans throughout
the target resource rich rock formation, which could be some
gas rich shale as shown on Figure 1. This is a fairly recent tech-
nique that requires modern horizontal drilling heads;

* The preparation of initial fractures with directed explosive charges;

* The pumping of fracturing fluid. This could go on for days, and
requires substantial reserves of water, chemical additives, and
powerful pumps’;

¢ The mixing in if proppant. This hard solid additive spreads in-
side fractures and prevents them from closing once pumping
has stopped. Sand, or another granulate material such as ce-
ramic grains can be used, provided it is hard enough to hold
drained fracture walls open;

* And finally capture of hydrocarbons that flow out of the created
fractures in the production phase.

This process is indeed very sophisticated and expensive, but does
pays off. The Hubbert Curve has been beaten [15], and the forecast
of fossil fuel depletion popularized in the mass media appears to
have been postponed at least until the next century. Indeed over the
past decade natural gas production in the US alone increased by over
50% [92] due to the recent shale gas boom. This was achieved by
widespread application of hydrofracturing. Shale gas deposits, as op-
posed to conventional sandstones, have natural gas trapped in pores
of non permeable shale formations (again, see Figure 1). Hydrofrac-
turing, pumping fluid under extremely high pressures opens new

1 Apparently to extract oil one must first burn some oil
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INTRODUCTION

fractures, and creates pathways for the natural gas to escape these
pores in shale and flow all the way to the surface.

This work will cover only a single stage of the hydrofracturing pro-
cess, the numerical modeling of fracture propagation due to fluid
pumping. Although it is only a single stage of this larger multiphysics
problem, the modeling of fracture propagation is already sufficiently
challenging to produce interesting and novel research. The previous
physical concepts: pressure, porosity and permeability of the reser-
voir will now be coupled with incompressible viscous fluid dynam-
ics, fracture mechanics and complex non static geometries into a dy-
namic mathematical model. This will cover the evolution of short ini-
tial fractures located right at the drilled wellbore, to an underground
system of multiple fractures, that could span over several kilometers.
The engineering and geological challenges of choosing appropriate
drilling place, preparing a sufficient horizontal well at depths of up
to a few kilometers, and maintaining later production will not be cov-
ered here.

The problem of proppant mixing and transportation, that follows
immediately after the stage of fracture propagation will not be men-
tioned here. Taking proppant into consideration would introduce even
more physical properties and processes, which would in turn extend
the overall complexity beyond a manageable level. Even the oldest
and relatively simple proppant model by Einstein [27], might not de-
scribe the actual physical process correctly [45], but would make fluid
viscosity dependent on proppant concentration, thus add yet another
variable. Furthermore other thermal and chemical processes would
need to be incorporated into the model, as they also affect fluid vis-
cosity, therefore it is reasonable to exclude these factors and simply
assume uniform constant viscosity of the fracturing fluid.
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Figure 3: A schematics of hydrofracturing job (source [97])

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]

7



8 INTRODUCTION

KGD crack PKN crack

Fracture Tip Fracture Tip

Fracture Tip

Figure 4: The three classical models of hydraulic fracture: KGD (plane
strain), PKN and Radial (as originally depicted in [13])

1.2 OVERVIEW OF SINGLE FRACTURE MODELS

There are three classical single hydraulic fracture models, as shown
in Figure 4,

¢ ‘Radial’, describing evolution of a “Penny-shaped” crack, as
introduced by Sneddon [85]. This is a horizontal fracture that
propagates evenly in all directions.

e 'KGD, as developed independently by [30] and [39]. This is a
model similar to PKN, describing a vertical fracture of fixed
height that propagates horizontally in one direction.

* 'PKN’, based on an adaptation of Sneddon’s solution [86]. Named
after Perkins, Kern [76] and [70], describing a fracture of fixed
height and elliptical cross section, propagating horizontally in
one direction.

All of these models attempt to account for these coupled mechanics
governing the hydrofracturing processes:

¢ the solid mechanics equations, describing the rock deformation
induced by the fluid pressure

¢ the fracture mechanics criteria defining the conditions for frac-
ture propagation
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1.2 OVERVIEW OF SINGLE FRACTURE MODELS

¢ the equations for the fluid flow within the fracture and the leak-
off* to the surrounding rock formation

The computational challenges of these models follow from several
factors:

* a strong non-linearity introduced by the Poiseuille equation de-
scribing the fluid flow

¢ a non-local relationship between the fracture opening and the
net fluid pressure,in the general case

¢ the moving boundaries of the fluid front and the fracture con-
tour

* the degeneration of the governing PDE at the fracture front
* the possible lag between the crack tip and the fluid front

For the purpose of this work, only PKN model will be considered. The
first numerical solution for this model, by Nordgren [70], was based
on a few assumptions: the shape of crack was assumed to be ellip-
tical as a solution of the plain strain equation; rock toughness and
fluid lag at the crack tip were ignored; Carter’s law [14], a simplified
one dimensional formula, was chosen to govern fluid leak-off. These
assumptions resulted in PKN formulation being a relatively simple
model, that allowed prediction of single fracture’s under certain con-
ditions. However, many questions about its accuracy and properties
have arisen over the past years.

The initial crack length is assumed to be nonzero: 1(0) = I, > 0.
For the initial stage of crack propagation, the inertia term3 should
be included, indicating that the classical models that do not include
inertia are non-credible. This simplification can be justified as hy-
drofracturing is a relatively slow process that might begin from al-
ready pre-existing fractures, naturally present or artificially created
with directed charges [25]. The reasoning behind zero tougheners (i.e.
zero toughness, K;c = 0) is that the resistance of the propagation
medium is so small, that the energy dissipated by the fracture exten-
sion is negligible compared to the energy dissipated* in the viscous
fluid flow [3], moreover in [23] it has been proven that radial hydraulic
fractures in impermeable rocks generally propagate in the viscosity regime> ,
and that the toughness regime is relevant only in exceptional circumstances.

Not all the pumped fluid remains inside fracture. Leak-off refers to the fluid volume
that was lost, leaked through pores into the surrounding rock formation.

No mass is included, hence Newton’s second law of motion is not applied.

Lost to overcome the viscous forces.

The term viscosity regime refers to the case where fluid resistance to flow is the dom-
inant force in the process, while a toughness regime could occur within a very hard
rock formation in combination with a low viscosity fluid.
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Furthermore the PKN model assumes constant fracture height, which
has been changed in more recent pseudo 3D models. These P3D mod-
els take into account that a fracture can propagate through a medium
composed of multiple horizontal layers of of materials with varying
properties, so fracture height could also be a variable in the problem
[60].

Significant improvements to the PKN model were introduced by
Kemp in [38]. An asymptotic analysis of the solution near the crack
tip for impermeable medium model was presented as well as an ap-
proximate solution for the zero leak-off case, with accuracy to the first
four leading asymptotic terms. Kemp also efficiently implemented
the speed equation, perhaps for the first time, and used the fourth
degree of the crack opening (w*) as the variable in the numerical
computations. Finally, Kemp suggested use of a special tip element
for use in finite volume methods, compatible with the asymptotic be-
havior of the solution.

It should be noted that a major part of the existing literature is
linked to the University of Minnesota [13], including the work con-
ducted by Kovalyshen [41, 40] which introduced further improve-
ments to the PKN model. An extension of the zero leak off solution
[38] to a full series representation was given by Kovalyshen in [41].
For the leak-off function defined by the Carter law the two leading
terms of the asymptotic expansion were found, taking into account
the multi-scale arguments suggested by [29]. A finite volume (FV)
scheme with the special tip element was again used as the computa-
tion method.

The trend to use FV based methods was questioned by Linkov in
[56] where instead speed equation was reintroduced. This concept
was indirectly presented in [87] and utilized by [38], but later aban-
doned. Linkov discovered that the hydraulic fracture problem could
be ill-posed and exhibit troublesome properties, and to eliminate this
circumstance a number of techniques were proposed:

¢ the speed equation to trace the crack front instead of the usually
applied total flux balance condition.

e the so-called e-regularization technique which consists of im-
posing the computational domain boundary at a small distance
behind the crack tip.

* a new boundary condition to be imposed in the regularized
formulation.

* a new dependent variable: the crack opening cubed, that ex-
ploits the asymptotic behavior of the solution.

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]



1.2 OVERVIEW OF SINGLE FRACTURE MODELS

e spatial coordinates that move with the crack front, and eval-
uation of the temporal derivative under fixed values of these
coordinates.

This reassessment sparked a series of publications redefining the con-
ventional approach to the PKN model [54, 57, 55, 65, 106, 107, 44]
where the Finite Difference methods were used to deal with the gov-
erning PDEs. Initially it was shown that for the case of leak-off van-
ishing near the crack tip a great improvement over previous methods
can be achieved by using a proper form of boundary condition and a
modified dependent variable [65]. Then, in [44], a paper that is inte-
grated as a part of this work, it was shown that Linkov’s suggestions
are also beneficial in the case of the singular Carter law [14] leak off.
Other works in this series [106, 107] sought to use more promising
numerical algorithms, and apply these strategies to the KGD model.

The context of single hydraulic models and their development was
described. This should be treated as a brief overview that outlines the
most important issues and challenges. For further reading there are
numerous introductory publications on both theoretical and numeri-
cal aspects of single hydraulic fracture models such as: [2, 80], as well
as a number of printed books [25, 93] that start at an elementary level
of non hydraulic fracture mechanics and build up to the formulation
of single fracture models.
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1.3 INTRO TO MULTIFRACTURING

So far the traditional models have assumed the existence of only
one fracture. Although this assumption has worked well in planning
reservoir treatment for decades, and has been verified through some
simple experiments [11, 52], these single fracture models are simpli-
fied best guesses and do not represent actual understanding of what
is happening underground. The classical models might be interpreted
as attempts to try to mimic systems of multiple fractures [83], that
under favorable circumstances could act approximately like a single
dominant fracture. A number of other technologies have been devel-
oped to aid and monitor treatment process, including microcosmic
mapping that detects minor seismic activity associated with fracture
front movement [18], and surface displacement detection [24]. As
more and more fracturing data have become available, attempts to
include these in the simulations have been made, but single fracture
models have unfortunately not been able to account for all this extra
information.

It should also be acknowledged that the assumption of a uniform
medium is not accurate; in fact the opposite should be expected for
most reservoirs. In reality rock formations are far from being per-
fect fixed height two dimensional mediums, at the very least some
defects should be considered, such as pre-existing natural fractures,
that are of great interest in shale rich formations [48]. These natural
preexisting fractures would have an effect on propagation of existing
and opening of new hydraulic fractures[42, 109]. Before treatment,
the naturally exiting fractures alone form a discreet fracture network
[94, 108], and it would be expected that the treatment will not produce
a perfect single fracture, but rather be influenced by these preexist-
ing fractures. Furthermore, to optimize the hydrofracturing process,
a number of fractures are initiated simultaneously [24, 10] in order
to achieve greater coverage of the fractured reservoir. Therefore, to
make a more accurate model one needs to account for multiple frac-
tures, which could be done by building a more complex model based
on existing theoretical single fracture solutions.

While a single simple fracture propagation is relatively easy to com-
pute with proper usage of implicit methods and numerical formula-
tions [2], to improve these into a multifracture model is a much more
complex challenge. The mathematical formulation must be extended
to account for multiple fracture interactions, while the computational
performance should not be drastically affected by multiplying the
problem size. However, the effort required to handle and display data
is much greater when considering multiple fractures. These factors
alone should be accounted for the variety of hydrofracturing models
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that appeared over the few past years, that are capable of dealing
with multiple fractures.

To list a few example solutions, lets first begin with a model given
by Ghani [31]. It is a relatively straightforward solution that allows for
a hydraulic fracture to propagate freely in a an inhomogeneous dis-
cretization of 2D plane, depicted in Figure 5d. Other solutions how-
ever tend to put much stricter constraints on fracture path and shape.
The influence of nearby fractures can result in shadowing6, which is ob-
servable in some solutions, including the most recent ones by Bunger
[12]. The most developed models available, are actually commercial
software used by oil consulting companies, such as Schlumberger
(works of Kresse and Weng [43, 42, 18]) or Itasca (Damjanac [21]),
which attempt to produce comprehensive simulation of treatment
process.

All these models are based on existing single fracture solutions,
but none uses the formulation derived from the speed equation nor
e—reguralization [65], nor two term asymptotics boundary condition
[44]. Additionally the source code of these solutions is not publicly
available, nor do any truly free licenses exist. These leaves an open
space for new solutions which are thoroughly tested in terms of ac-
curacy, based on some reliable formulations, and given away for free
and unrestricted usage.

6 A fracture growth may be inhibited by the presence of other nearby fractures, this
phenomena is sometimes called shadowing
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Figure 5: Samples of various multifracturing solutions as a quick compari-
son of the general trend. The original renderings of the solutions
are shown in [43, 42, 21, 18, 31, 12].
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1.4 AIM OF THIS WORK

So far this introduction Chapter has shown the economic motivation
behind hydrofracturing, the techniques for single fracture modeling,
and some examples of attempts to model more complex reservoirs
with multi fracture models.

Reservoir stimulation can be an expensive and uncertain task. Choos-
ing the right place to drill, and performing the fracturing properly, is
hard and without adequate planning the whole enterprise is very
likely to fail. Industry attempts to eliminate this risk by developing
computer models that predict what the results might be. This work
will attempt to make a prototype model that answers part the of more
general question: will this well produce any oil or gas?

The answer is not simply yes or no, but rather a combination of
multiple results, where each of them carries a bit of information.
The single fracture models mentioned in Section 1.2 give a predic-
tion about how deeply the rock formations can be penetrated, but
this does not tell much about the cost, risks or result production, but
provides one piece of the puzzle.

This work should concentrate on exploring the existing models and
finding their applications, which can be generalized in the following
tasks:

e Study of the PKN model of a single fracture, and attempts to
improve its theoretical formulation;

e Implementation of code that can efficiently handle single frac-
ture problems;

* Extension the single fracture formulation into multiple fracture
formulation, multifracturing, that can handle more complex prob-
lems;

e Development of a software solution that utilizes all this new
ideas, in order to model the process of hydraulic fracture growth.

All of the above have been attempted a number of times, and so multi-
ple solutions already exist. However, the solutions are all different in
accuracy, performance, applicability, scalability and even availability.
Thus the work here does not seek to produce explicitly better result,
but rather to create an alternative that combines different methods
and approaches to produce different, yet compatible solutions, that
are freely available for public use”.

7 Provided as it is, with a strong and justified belief that it works, but no written
guarantees, aka GPL
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PKN MODEL REFORMULATION

The first objective in this work will be to reformulate the original
PKN model formulation, by taking advantage of the speed equation
as reintroduced by Linkov [56], although it was originally employed
by Kemp [38]. Previously the majority of hydrofracturing problems
have been solved using finite volume methods, but thanks to the
speed equation it is now possible to solve these using finite differ-
ence methods. This chapter will prepare the theoretical mathematical
background upon which new finite difference based solutions can be
later constructed. It is to be hoped that such a new formulation would
not only be more straightforward, but would also lead to improved
overall modeling of hydraulic fracture propagation.

A significant part of this Chapter was done under mentoring® by
other research group members, as it repeats published article [44],
and can be traced back to previous works [65, 54]. It would be im-
possible not to include these previous findings, without losing the
essential prerequisite information, needed to understand the new for-
mulation.

Within this Chapter, the work is divided in to five sections:

* Section 2.1 is a general outline of background works on the
PKN model, including the previously known technique of using
crack tip asymptotics.

¢ Section 2.2 presents a new approach to the problem using frac-
ture width w as the problem variable (29), which is probably
the first formulation to use the asymptotic term directly. Fur-
thermore a simplification of carter law (Subsection 2.2.1) and a
dereviation of further asymptotic terms (Subsection 2.2.2) are
presented.

* Section 2.3 reuses the U variable formulation [54], bringing it
into line with the other formulations of this Chapter.

® Section 2.4 introduces a new variable (), and a new formulation
compatible with the previous w and U variable formulations.

* Section 2.5 explores the old speed equation related tip bound-
ary condition (Subsection 2.5.1), with the aim of introducing an
improved two term boundary condition (Subsection 2.5.2).

1 As opposed to the next Chapters where more and more work would be done com-
pletely independently.
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Figure 6: PKN model geometry.

2.1 PRELIMINARY RESULTS
2.1.1  PKN Model original formulation

The PKN model is essentially a 1D model, with a single horizontal
axis of propagation x as shown on Figure 6. Numerous descriptions
of this model are already available [44, 65, 70, 40], thus the one pro-
vided here should outline the most important aspects in the context
of this Thesis. Consider a symmetrical crack of length 2[ situated in
the plane x € (—I,1), where the length | = I(t) is one of the solution
components changing as a result of the fluid flow inside the crack.
The initial crack length is assumed to be nonzero: [(0) = I, > 0. The
crack is fully filled by a Newtonian fluid pumped at some known rate
go(f) at the crack mouth x = 0.
The Poiseulle equation for Newtonian fluid flow in a narrow chan-
nel is written in the form:
1 3apnet

q=—7:0

M~ ox’ (1)

where g = g(t,x) is the fluid flow rate and w = w(t, x) is the crack
opening width, while puet = pret(t, x) is the net fluid pressure, the
difference between the fluid pressure py,;y inside the fracture and
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2.1 PRELIMINARY RESULTS

the confining stress 0p>. The constant M involved in the equation is
defined as M = 12u, where u stands for the dynamic viscosity (for
example see [54]).

The continuity equation, accounting for the crack expansion and
the leak-off of the fluid is given by:

2$+32+W:Q t>0, 0<x<I(t), (2)
where g; = g;(t, x) is the volume rate of fluid loss to the surrounding
formation in the direction perpendicular to the crack propagation
direction (x-axis).

Although the definition of leak-off as the volume of fluid lost to the
surrounding medium is well defined, the choice of function that de-
scribes this quantity is subject to further interpretation. Indeed litera-
ture sources choose to use various functions to represent this physical
phenomena [40, 70, 42, 65], so a sensible choice is to consider multiple
possible variations and be able to switch these at will. In this work
the following leak-off versions are considered:

qi(t,x) =) (t,0) +q(tx), =123, (3)
where:
m_ _ Gl @ _ CBpnet 0 _
= = 2t = +Cal(t),
q F— (%) q F—1(x) 14 31 () Priet 32(t)
0 <x <I(t).
(4)

Here C;, sometimes denoted as Cj, is assumed to be a known con-
stant defined experimentally3 [14] . Recently C; was estimated an-
alytically for a poro-elastic material by Kovalyshen [40]. The pres-
sure proportional ql(z) refers to the modified law given by Clifton
[19], which is a more accurate version of the Carter Law that takes
pressure difference into account. The function 7(x) contains process
history information (it is explored in greater detain later in Section
3.8). It defines the time at which the fracture tip reaches the point x

and can be computed as the inverse of the crack length:

(x) =11 (x), x> L. (5)

Pnet = Pfluid — 00, Where constant background stress 0p is assumed to be uniform
over the entire fracture length, but this assumption will be challenged in the follow-
ing Chapters

Cy, is given in % as an experimental 1D measure of how fast fluid soaks into the
rock medium.
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The functions in (4), C;(t) = Cj(t,w, p), (j = 2,3) are bounded func-
tions in time that may depend on the solution. Finally, the terms 47,
(j = 1,2,3) in (4) are assumed to be negligible in comparison with q,(] )
near the crack tip. Note that application of the Carter leak-off law [14]
which is a simplified model of established fluid diffusion through the
fracture walls, is rather questionable at the initial stage of the crack
propagation [70, 49, 61].

The set of possible leak-off functions given in (4) covers the main
spectrum of possible behaviors used in hydrofracturing simulation
[40], which in turn allows to establish a generalized model in this
thesis.

The system of equations (1) - (2) should be supplemented by the
elasticity equation. The simplest relationship used in the PKN formu-
lation is re-used here,

Pret = kw/ (6)

with a known proportionality coefficient k = %& found from the

solution of a plane strain elasticity problem for an elliptical crack of
fixed height & [70], where this h is also the height of the fractured
rock formation. For this model to be valid it is further required that
h >> w [70], and generally it is expected that L >> h >> w, other-
wise another type of model geometry, such as radial, could be more
suitable [40]*. The constants E and v are the Young modulus and the
Poisson ratio, respectively.

On substitution of the Poiseulle equation (1) and elasticity rela-
tionship (6) into the continuity equation (2), one obtains the well
known lubrication (Reynolds) equation defined in a trapezoidal do-
main (t >0, 0 < x <I(t)):

ow k o OPne
—<w3 ! t>+‘11=0- )

ot M ox ox

Since the system has a natural symmetry with respect to variable
x and the equations are local, it is convenient to only consider the
half (symmetrical part) of the interval [0, /(¢)] instead of the full crack
length [—I(t),1(t)].

The initial conditions for the problem are:

100) =1, w(0,x)=w.x), x€(0,l), (8)

The PKN model is still technically valid if # >> L >> w, but sometimes a more
physically plausible approach would be to consider a radial fracture that is converted
to the PKN type once L > h. Nevertheless tests shown later in Section 3.9 clearly
demonstrate that L >> h >> w is the dominant regime. Furthermore the radial
model only fits well if the first initial fracture originated from a point source gq.
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while the boundary conditions consist of the known fluid injection
rate at the crack mouth, go, zero crack opening and zero fluid flux
rate at the crack tip:

q(t,0) = qo(t), w(t,1(t)) =0, q(t1(t)) =0. )

Note that this formulation looks overdetermined> as the governing
equation (7) is of second order with respect to the spatial variable.
This issue shall be discussed later in Section 2.2.

By consecutive integration of equation (7) over time and then space,
one can also derive the formula for the global fluid balance:

0 t 1)t
/ [w(t,x) — w(x)]dx — / qo(t)dt +/ / q:(t, x)dtdx = 0,
0 0 o Jo (10)
where it is accepted that w,(x) = 0 when x > I, and I'(¢) > 0.
It has been shown in [54], that the particle velocity plays a crucial
role in analysis of the problem, and is defined as:

V(tx) = % £>0, 0<x<I(t), (11)

where V (t, x) indicates the average velocity of fluid flow through the
cross-section of the fracture.

Under the assumptions that the crack is fully filled by the fluid, and
that sucking, ejection or discharge through the front can be neglected, the
fluid velocity defines the crack propagation speed and the following speed
equation is valid [38, 56, 57]°:

I'(ty=V(t1(t)), t>0. (12)

Moreover, for physical reasons, one can deduce that the fluid velocity
at the crack tip is finite:

0<V(tx)<oo, t>0, x<It). (13)

Note that by allowing the crack propagation speed to be infinite, one
has to simultaneously include the inertia term in the equations”. Thus,
the estimate (13) is a direct consequence of neglecting the acceleration
terms.

The order of the system(7), second order in this case, with respect to x, should match
the number of boundary conditions. There are three conditions in (9).

In fact, the speed equation in this form is valid only under the assumption of zero
spurt loss at the crack tip [70]

There is no mass involved, hence no inertia term F = ma = mV is present to cancel
out infinite velocity. In fact it is known that fracturing processes take hours and are
rather slow by nature.
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2.1.2  Asymptotics behavior of the solution and its consequences

As was mentioned in [87], the presence of both w and g in (11), creates
serious difficulties when employing the fluid velocity as a variable.
However, as shown in [56, 57, 54, 55, 64], proper usage of fluid ve-
locity may be extremely beneficial. Primarily, it allows one to replace
the two boundary conditions at the crack tip (9) with a single con-
dition, while additionally incorporating information from the speed
equation (12), (13).

Indeed, the boundary conditions (9) in light of (1) and (6) lead to
the estimate:

w(t, x) :o((Z(t)—x)%), x = 1(t), (14)

which does not necessarily guarantee (13). However, further analy-
sis of the problem, for different leak-off functions (see [41, 38] and
Appendix 2.2.2), shows that the particle velocity is bounded near the
crack tip and the crack opening exhibits the following asymptotic be-
havior:

w(t, x) = wo(t) (I(t) — x)F + w3 (8) (1(t) — x)" +o((1(£) — x)*)

x — (1), (1)

for some & > 1/3. In the case of the classical PKN model for an
impermeable solid (or when leak-off vanishes near the crack tip at
least as fast as the crack opening) the exponent « = 4/3 was found in
[38] and [65]. For the case of the singular Carter’s type leak-off, the
exponent & = 1/2 was determined in [41].

Note that the asymptotics (15) show that the fluid velocity is indeed
bounded near the crack tip. Moreover,

V(tx) = Vo) + Va(t) (1(t) — )P +o((1(t) = x)F),  (16)

as x — I(t), where p = a —1/3 and

Vo= sad(t), vlzj(;(w;) BOw). (1)

As follows from Section 2.2.2, V(t, x) may not be as smooth near the
crack tip as one might expect and the exponent § in (16) plays an
important role. Indeed, if B > 1 then V(t,-) € C![0,(t)] and the
particle velocity function is sufficiently smooth enough near the crack
tip. However, this happens only in the special case of « = 4/3 when
Vi (t, x) is bounded near the crack tip. In the case of singular leak-
off (0 < B < 1), the particle velocity near the crack tip is only of the
Holder type V(t,-) € C1[0,1(t)) N HP[0,1(t)]. In Section 2.2.2 the exact
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form of the asymptotic expansion (15) is presented, which yields the
aforementioned smoothness deterioration in smoothness V near the

crack tip for the singular leak-off models.

Note that the estimate (15) (or equivalently (16)) is in line with

the condition (13). Thus, in light of (11), the pair of conditions (9),

and (9)3 is equivalent to (9)2 and (15). This clearly illustrates why ac-
counting for asymptotic behavior of the solution in form (15) is of
crucial importance for the effective numerical realization of any algo-
rithm utilized in hydrofracturing [37, 29]. Alternatively, the fact that

the particle velocity function is sufficiently smooth near the crack tip
has been one of the primary arguments for usage of the speed equation

and proper variable approach as the basis for improvement of the exist-

ing numerical algorithms [56]. It should be emphasized that behavior

of V(t,x) near the crack tip may have serious implications when us-

ing the e-regularization technique (Section 2.5). Therefore, one of the
aims of this work is show that, regardless of the possible smoothness
of the particle velocity near the crack tip, the approach proposed in
[56, 57, 54, 55] and [65] is still efficient®.

8 Since singular Carter leak-off (4) is now allowed , the behavior of the particle velocity
at the crack tip may be altered.
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2.2 NORMALIZED FORMULATION

Lets normalize the problem by introducing the following dimension-
less variables:

= X it M B (B
iy T h T WAL )
w(F, %) = w(lt'x), VET) = "), LE) = lg”,
l%qo(f) = tﬂqo(t)/ l*ﬂ‘il(z:, f) = tn‘]l(t/ x)/ (18)

where ¥ € (0,1) and L(0) = 1.
Using this notation, one defines the normalized particle velocity as

. w2 oW

V(%) = 10 —x (19)

while the conservation law (2) in the normalized domain is rewritten
in the following manner,

oW 1 - - - oW _dV -

= — T = X 1— X — — W= —~t,~.

o = LD (2V(£1) — V(£ %)) TR g§i(F, %) (20)
The leading terms of the asymptotic estimate of the leak-off function
from (4) are now:

160 = SO0, 2,0 - CO2 D)
72 (%) = Car (Ha(E %) + Can (). (21)
Here, the function
DW=\ T (22)

is introduced in Section 2.2.1, where the remainder between the nor-
malized total flux and the leading term (21) is estimated. The normal-
ized term g} (f, X) vanishes near the crack tip faster than the solution
itself.

The normalized initial conditions (8) and boundary conditions (9)
are:

L(0)=1, @(0,%)=m. (%), x€(0,1), (23)
and . 5
—uwﬁ§@m=%®,w@n:a (24)
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The global fluid balance (10) can be written as
o 1 P
L(F) / B(F, x)dx — / B(x, 0)dx— / Go(t)dt
0

+/ / gi(t, x)dxdt = 0.

For convenience, from now on the "~" symbol will be omitted, and
all the dependent and independent variables will only be consider in
their dimensionless forms.

Note that this particular representation (20) of Reynolds equation
highlights an essential feature of the problem, that it is singularly
perturbed near the crack tip. Indeed, both coefficients in front of the
spatial derivatives on the right-hand side of the equation (20) tend to
zero at x = 1. Thus, the asymptotic behavior of the solution near the
crack tip (x — 1),

(25)

w=wo(t) (1—x)° +wi () (1—x)+0((1—x)"),  (26)

V= Vo(t) + Va(t) (1 —x)* 3 +o0 ((1—x)“—%), (27)

represents nothing but the boundary layer®. Moreover, by normaliz-

ing (17) one obtains .
Vo(t) = 3L7(t)w8<t)' (28)

The terms wy, wy and Vy, V4 in (26) and (27) are different from those
shown in (15) and (16). In fact, the former should be written with "~"
symbol.

On substitution of (19) into (20), one eliminates the particle velocity
function from the Reynolds equation

ow 1 |1 5 ow 2 (ow\? | 50%w

i [ g I = —

ot~ I2(D) [3“’0" ax TV <8x> T | T 29
Here wy is the coefficient of the first term of the asymptotic expansion
(15). This form of lubrication equation exhibits the same degenerative
properties as (20), and the coefficients of the leading terms tend to
zero near the crack tip.

The speed equation (12) that defines the crack propagation speed
is given in the normalized variables as

L'(t) = Vo(t), t>0. (30)

The boundary layer concept was introduced by Ludwig Prandtl at [78], and refers to
the fluid in the immediate vicinity of a bounding surface, here the crack tip
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Taking (28) into account, the latter can be rewritten as

thZ = %wg(t), t>0. (31)
which serves to determine the unknown crack length L(f). It has
been shown in [65] that (31) offers advantages over the standard ap-
proaches based on the global fluid balance equation (25).

As a result of the foregoing transformations, one can formulate a
system of PDEs describing the hydrofracturing process. The system
is composed of the two operators

d

0= Aw(w, L?), iLz(t) = Bu(w), (32)

dt

where A, is defined by the right-hand side of equation (29) with the
boundary conditions (24), while the second operator B, is given by
(31). The system is equipped with the initial conditions

L(0)=1, w(0,x)=w.(x), x€(0,1). (33)
2.2.1  Carter type leak off simplification

Consider the transformation of the Carter law described by (4) when
applying the normalization (18). Assume that

1 D
Vi—t(x) V1-%

where the function D(t) is defined in (22) while the remainder R is
estimated later in (37).

To find the function D(t), and thus to obtain the exact form of
equation (22), it is enough to compute the limit:

+ R(t, %), (34)

D(t) = lim =%

) G35)

which can done by utilising L'Hopital’s rule, taking into account that
x = L(t)asx¥ —1,

(x) = T(L(t)%) = LT(L(t)%), (36)

and that the crack length is a smooth function of time (L € C! at least).
This last fact follows immediately from the problem formulation in
terms of a dynamic system (32).

Then, having the value of D(t) we can estimate the remainder
R(t,%) when ¥ — 1, or equivalently when x — I(t) (or t — T(x)).
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Thus, we search for a parameter ¢ # 0 which guarantees that the
limit R(t,7)
. X))
A=Im G5 =
1 ( D(t) L(#)T'(x)
(

1—-3)32  (t—1(x))3/2

does not approach to zero or infinity. Thanks to this assumption, we
can write

I A=

! = D(t) — X 0 —X
t—T(x)_m+A(1 Ft+o(1-%¢), &7

when ¥ — 1, or equivalently x — [(t). Taking this last estimate into
account A can be expressed as:

_ 1 1 D()  L(H)7'(x) D(f)
A= Jlﬁlg} 28(1—x)6-1 ((1 — %)3/2 T 7(x) m) -
AL(t) I (1-%)7"(x)

2¢ xlg} t—1(x)

Upon substitution of v/(x) = 1/L'(t) at x = L(¢) and (35) into the
limit we obtain

A - lim D(t) < 1 L(t)T’(JC)) _ AL(H)D*(t)

—120(1—%)8172\1-%  t—1(x) 28L/(t)

(1+0(1)).

and application of (35) and (22) then gives:

1426, D() 1 LT D
2(‘? _fﬁlzé(l—f)g_l/z 1-—x \/t—T(X) \/1—55

_ADOL() | T(x)VI-F

2¢ Fa t—1(x) '

By repeating this process, we arrive at
/
(2+26)A = lim D(t) 1 LT (x)D(t) ,
t—1 ¥ \V1I—% ViE—1(x)

and, finally, by eliminating the square root via use of (37) we obtain,
after some algebra,

_ ' (x) D2
(2004 = () b -
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This relationship gives a finite value'™ for A if { = 1/2 and, as a
result, we find:

A= iDg’(t)LZ(t)T”(L(t)) -1

2.2.2  The details of the crack tip asymptotics

2.2.2.1  Solving for ug

Lets begin by with the first term of the asymptotic expansion (45):
w(t,x) =wo(t)(1—x)*+0((1—x)"), x—1 (38)

By the speed equation (19) it can be deduced that the first term of the
asymptotic expansion for the speed function (46) is given by

V(tx) = A/%wg(t)(l _ x)3ao—1 +0 <(1 . x>a1+2a071> Cox—1
(39)

or alternatively may be written as:

V(t,x) = vo(t)(1 —x)P +0 ((1 — x)ﬁ1> , x—1 (40)

where vy = Nf‘fl(‘t) w3(t) and By = 3ap — 1.

Interestingly V/(¢,1) can take three values depending on the value
of ﬁo :

Uo(t) if Bo=0
V(t,1) =140 if Bo>0 (41)

(o] if‘Bo<O

It can be concluded that if V(t,1) is to have a meaningful value at
x = 1 the power ap must be chosen such so By = 3ap —1 = 0, and
SO wy = % This ensures that the fracture tip can propagate at finite
speed, following the zero fluid lag assumption.

If V(t,1) were and ay > % then there would be no fluid movement
at the crack tip and no crack propagation. If ay < % then V(t,1) would
be infinite and no straightforward physical interpretation can follow.
Therefore the only sensible choice is to take By = 0, leading to

V(1) = vo(t)(1—1)° =vo(t), (42)

o (1 — %)! appears in the denominator, and after some algebra cancels out with the

numerator
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from which it can be said that the crack tip propagates at speed
vo(t). Additionally the value for vy(t) can be associated with w3 (t) to

obtain L
vo(t) = ng(ﬂ (43)

Having determined that ag = % for the one term expansions (38) and
(40) these can then be substituted into (20) to find

wh(t)(1 =)} =575 (wo(Boo(0(1 =)

3L() x—1. (44)
—DC(H(1—-x)"t+0 ((1 - x)“lfl)

If next power were such that a; > %, then this expansion would be

complete, that is further terms would of higher order than O (1 — x) %,
although the introduction of the leak off function might complicate

this problem The term (1 — x)_% originating from the leak off func-

tion ql (4) (or (1 - x) o if using the pressure proportional Carter
type leak version ‘71 (4) ) is the most significant in (44) and must be
matched with O ((1 —x)"" 1) . This means that more terms must be

found to clear this expansion, beyond the values oy = % and Bo =0
found here.

2.2.2.2 Further asymptotic terms

The asymptotic expansions for the crack opening and the fluid veloc-
ity near the crack tip in the normalized variables (18) can be written
in the following general forms:

Ew] J(1—x)%+0((1—x)%), x—1,  (45)

and
N

V(tx) =Y Vi(H(1—x)Pi+O0((1—x)%), x—=1,  (46)
j=0
where 0, > ay, 0v > Bu, 20 = 1/3, fo = 0, and both g, a1, ..., a, and
Bo, B1, - .., Bn are some increasing sequences. Note that these asymp-
totics sequences are related to each other by the speed equation (19)
and thus, regardless of the chosen leak-off function, we can write

Y1 —x)Pi+ .. (47)

Mz
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1 ANRLR oo, +oa—1
%(ﬂ,g;ogajwj(t)wm(t)wk(t)(l —x)% k1
In line with the discussion following equation (16), we are interested
only in terms where ; < 1, restricting us to the smallest ¢y > 1, since
the values of B; are combinations of the sums of three consequent
components of the exponents a;. However, since ayp = 1/3p is now
known we can write

Vo(t) = 3L(t) wO(t)/ (48)
Vi(t) = Lgt) (“1 + §> wy(Hwi(t), Pr =1~ % (49)

To continue, we now need to calculate the value of the exponent
n1,as it is not clear a priori which value determining the next expo-
nent B, = min{2/3 4+ ay,1/3 + 2a4 } is larger. To do so, lets rewrite
the continuity equation (20) in the form:

dw  Vo(t) dw 1 o(w(Vo—V))
R T RUREIE i s T ra e [(CEO N CY

Here, the terms on the left-hand side of the equation are always
bounded near the crack tip, while those on the right-hand side be-
have differently depending on the chosen leak-off function (4).
Consider the following three cases of g; behavior.

1. The first case, where
qi(t,x) =o(w(t,x)), x—1,

where we also have an impermeable rock formation. From anal-
ysis of the leading order terms in the equation (50), it is clear™
that w(Vp — V) = O((1 — x)*/3), as x — 1. This, in turn, is only
possible for f; = 1 and, therefore, ay = 4/3. Finally, comparing
the left-hand side and the right-hand side of the equation, we
obtain

wo(t)

wh(t) = 5P (D) +4% (1), Va(t) = fesw(t)n (1)
(51)

This case has been considered in [54] and [65].

2. The second case, where the leak-off function is estimated by the
solution as O(w(t, x)), or equivalently,

qi(tx) ~Y(Hwe()(1—x)/3, x =1

11 Following (26), the right hand side of (50) is O((1 — x)'/3), on the left side g;(t, x) = 0

for impermeable rock, so a(w(‘a/+v)) =0((1-x)V3) = w(Vo—V) = O((1—x)*3).
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The previous results are then related to the values of a; and B,
and, therefore, the equation for Vi(t) (51) remains unchanged,
while the first becomes

wy(t) = 10 wo(t) (Vo(t) +4Vi(t)) — Y(#)wo(t). (52)

This case corresponds to ‘71(3) (21), where C3 = 0 and Y(¢t) =
kCa1 (t).

3. The third case, where we have the general form of leak-off func-
tion,

qi(t,x) =) (1 —-x)? +o((1-2)13), x—1,

and—1/2 < 6 < 1/3. Here, we conclude that w(Vy — V) =
O((1 — x)'*?%), as x — 1 or equivalently, B; =0 +2/3 and a; =
1 + 0. Moreover, in this case:

(1+0)weVy = L(H)D(t), Vi(t) = 1 (9 + 4) wi()w (1),

L(t) 3
(53)
and thus 3L2(t)D(t)
wy (t) = (4+30)(1+ 9)708(15)' (54)

Note that the particle velocity function is not smooth in this case
near the crack tip. Its derivative is unbounded and is given by

?; =0(1-x)"13), x—1

To formulate an expression similar to (51) or (52) for the general case,
we should continue asymptotic analysis of the equation (50), incorpo-
rating the available information. Although the analysis can be done
for the general case, only three variants will be considered (compare
with (4)):0=0,0 =1/3—-1/2= —1/6and 6 = —1/2.When 6 = 0,
a1 = 1 and B1 = 2/3, returning to equation (47), we conclude that
B2 > 1 and, therefore,

1

%wo(t)‘/o(t). (55)

wp(t) =

This case corresponds to ql(3) (21), when ®(t) = C§2)(t)w0(t) and
(1)
cl =o.
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If 0 = —1/6, then oy = 5/6 and B1 = 1/2. The function ®(t) can
then be written as ®(t) = CoD(f)wo(t) (compare to ql(z) (21)), and
again equation (47) gives B, > 1, while equation (50) leads to

Wh(1) = 57 (@o(6)Vol#) + 41 (Vi (). (56)
(t)

Summarizing, in both the mentioned above cases, there exists a single
term in the asymptotic sequence of the particle velocity which has
singular derivative near the crack tip. Moreover, those terms (w; and
Vi, respectively) are fully defined by the leak-off function ®(¢) and
the coefficient wy for the leading term for the crack opening sequence
in (54) and (53).

The situation changes dramatically in the third instance, when 0 =
—1/2 (Carter law). We now have a1 = 1/2 and f; = 1/6 and ®(t) =
C1D(t). In this case, however, B, < 1 and the asymptotic analysis
must be continued further, to evaluate all the terms of the particle
velocity which exhibit non-smooth behavior near the crack tip. The
full details of this derivation will be omitted here, and the final results
are instead presented in a compact form. The first six exponents in the
asymptotic expansions (45) and (46), that introduce the singularity of
Wy, are

1 j .
==+, =, =1,2,...,6.
Y=5te PiTg
DI(t) L2 (¢ I (H)LE (¢t
wy(t) = 5 2 -y UL
wy (1) wy ()
wherej=1,2,...,5and
K‘l:%/ ¢1:2/ KZZ_%/ ll]z:—%,
_ 9768 _ 828 2097252 _ 5136
K3 =23, ¥3= TG0, Ka = — 005 + Y4 = — g9,

1081254096 1’0 — 1234512

K5 = “ooa385 - 1715 -
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2.3 REFORMULATION OF THE PROBLEM IN PROPER DEPENDENT
VARIABLES. FIRST APPROACH

In [54], and later in [65], it was shown that the dependent variable

U(t,x) = w(t,x) (57)

is a more favorable choice for solving the system (32)(33) than the
crack opening itself. This preference is based on the principle that,
according to the asymptotics of the solution near the crack tip, the
dependent variable U is much smoother than w. For example, in the
case of an impermeable solid, the solution U is analytic in the closed
interval [0,1] (see [54]), although the type of leak-off function is of
significant importance here. Thus, adopting the asymptotic represen-
tation (26), we see that for x — 1

U = Up(#)(1 — x) + Uy (£)(1 — 2)5+ +o((1 - x)372),  (58)

where the coefficients Up(t) and U (t) are directly related to those
that appear in the crack opening formulation

Uo(t) = wi(t), Ui(t) = wi(t)wi(t). (59)

Depending on the type of leak-off described in (4), the exponent in
the second asymptotic term, % + «, may take the value of 3/2, 11/6
or 2. In the first two cases, the transformation (57) no longer results
in a polynomial representation for the asymptotic expansion for U.
Consequently, the advantage of the approach using variable U must
still be confirmed in more general cases, where the leak-off may be
singular near the crack tip. On the other hand, at least two factors
work in favor of this formulation: Firstly, the spatial derivative of
U is not singular; secondly, the particle velocity is given by a linear

relationship,
1 oUu

3L() 9x

The governing equation (20) in terms of the new variable can be writ-
ten in the normalized domain x € (0,1) as

V(t,x)=— (60)

ou 1 ou oV 2
Fb YO [(xV(t,l) —V(t,x)) = 3uax} —3Usq,  (61)

Similarly to as in (29) the particle velocity function may be eliminated
from the lubrication equation,

—3Usq.  (62)

ou 1 au+ ou \ 2 02U
ot 3L2(t)
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Note that equations (61)-(62) are of a very a similar structure to those
evaluated for the crack opening w, and exhibit the same degenerative
nature near the crack tip.

The boundary conditions (24) transform to

- M;CUUIO) =qo(t), U(t,1) =0, ©63)

while the speed equation (31) takes the form

d , 2

The system of PDEs equivalent to (32) is then defined as

4
dt

iu = Ay (U, L?),

pr L2(t) = Bu(U). (65)

The operator Ay; is described by (62) with boundary conditions (63),
while the second operator By; is given by (64). Finally, the initial con-
ditions are similar to those used in the previous formulation (23),

L(0) =1, U(0,x)=w(x), x¢€(0,1). (66)
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2.4 REFORMULATION OF THE PROBLEM IN PROPER DEPENDENT
VARIABLES. SECOND APPROACH

Formulation of the problem in terms of the dependent variable U has
one considerable drawback, in that it is well known that for different
elasticity models and different hydrofracturing regimes, the asymp-
totic behaviour of the solution varies near the crack tip [3]. For ex-
ample, for the exact equations of elasticity theory and the zero tough-
ness condition (Kjc = 0), the exponent of the leading term of w varies
from %, for the Newtonian fluid, to 1, for the ideally plastic fluid. In
this case, reformulation to the proper type of the dependent variable
might be inconvenient, or even impossible.

For these reasons, another dependent variable will be introduced.
The new variable does not transform the asymptotic behavior of the
solution as smoothly as did the adoption of U, but it does have its
own advantages. Specifically, lets consider a new dependent variable
Q) defined as

1
atx) = [ w(t,e)dz. 67)

This variable is not directly related to any particular asymptotic representa-
tion of w(x,t), however it does assume that w — 0 for x — 1. As a result
the form of the governing equations for () remains the same, regardless of
the asymptotic expansion for w(x,t), so this formulation has a general (uni-
versal) character. Note that when using U, the optimal method of transfor-
mation for the lubrication equation essentially depended on the exact form of
the asymptotic expansion (the leading term) for w. Another advantage of ()
is its clear physical and technological interpretation. Specifically, it reflects
the crack volume measured from the crack tip.

The asymptotics of the function () near the crack tip take the form

Qt,x) = OQo(t)(1 — x)% + Oy (£)(1 — x)**!

68
+o((1—x)*1), x—1, ©9

where the coefficients () (t) and () are related to those in (26),

Qo(t) = Juolt), Oa(t) = —

wi (t). (69)

Thus, similarly to U, the new variable is smoother than the crack opening,
w, and the first singular derivative of () is that of the second order.
By spatial integration of (20) from x to 1, and substitution of (67)

we obtain
00 1 0Q)
TR 0] (V(tx) =xV(£1) 2=+ V(EDQ| = Q1 (70)
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where we have taken the monotonicity of L'(¢) > 0 into account and

Q) = [ (e 2

Here, the particle velocity (19) is computed via

1 9 (a0’
V(tx) = 3L(F) 9x <ax> / (71)

and by elimination of V(x,t) from the equation (70), we derive a new
formula for the lubrication equation

0Q) 1 o0\’ 222 64 0Q)
ot L) [<8x> 2 ath (Q xax>]_Q" (72)

The boundary conditions (24) are expressed as

1 /30\° a0 00
0] <ax> W(ho) = qo, g(le) =0. (73)

Interestingly, the first boundary condition, directly substituted into
the lubrication equation (70) can be equivalently rewritten in the form

o B 64 3 qo(f)

5 (H0) = —mﬂ(t,O)Q o(t) + m —Qi(t,0),  (74)
where this condition, in turn, represents the temporal local flux bal-
ance condition. To verify this, it is sufficient take the time derivative
of the equation (25). Furthermore, this condition appears to be more
easily implemented into a numerical procedure than (73), but may
lead to some increase of the problem stiffness, as shown later in Sec-
tion 3.1.

It is easy to verify, by using the governing equation (70) and limit-
ing values for all its terms as x — 1, that a weaker boundary condi-
tion

Q1) =0 (75)

is equivalent to the original (73). Finally, the speed equation (31) in
the () formulation assumes the form

LA = SO (0). (76)

In this way, another system of PDEs is obtained, that is composed
of two operator relations,

d d

0 =4a(Q, L?), aLz(t) = Ba(Q)), (77)
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where, as previously, Aq is defined by (29) with boundary conditions
(73) and optional (74). The second operator, Bq, is given in equation
(76). Here the initial conditions are obtained from (23):

LO) =1, 00x) = 0.0 = [ w.(@)de 79)
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2.5 E-REGULARIZATION AND THE RESPECTIVE TIP BOUNDARY
CONDITIONS

2.5.1 One term condition

Consider a spatial domain of the problem reduced in accordance with
the e-regularization technique to the interval x € [0,1 — €], where ¢
is a small parameter. This so-called e-regularization technique was
originally introduced in [56] for the system of spatial coordinates
in motion with the fracture front, and in [65] the authors efficiently
adopted this approach for the normalized coordinate system. As a re-
sult the mesh, {x;} Y ;, would be composed of N points with x; = 0
and the last point xy = 1 — ¢, separated from the tip by . Some
examples of such meshes are shown in Appendix A.1.

With e-regularization, the Dirichlet boundary condition (63) is re-
placed with an approximate version

U(t,1—¢)=3eL(t)V(t 1), (79)

It was suggested that the crack propagation speed V (¢, 1), and simul-
taneously the particle velocity at the fracture tip, could be computed
from the speed equation (64) in its approximate form

1 ou

V(1) = -~

0] ax(t,l—e). (80)

The pair of conditions (79) and (80) have shown an excellent perfor-
mance in terms of accuracy of solution and, as has been proven in
[65], reduced the stiffness of the dynamic system in the case of a van-
ishing leak-off function near the crack tip. We can check that, for such
a leak-off model, the numerical error introduced by using the approx-
imate conditions instead of the exact examples, is of the order O (&?).
The other improvements following usage of this method were shown
in [54, 65].

The above conditions can be written in an alternative and equiva-
lent form. Indeed, one can merge (79) and (80) into a single condition
of the third type

Ll(t,l—e)—l—saa—l;(t,l—e):o. (81)

Interestingly, the latter condition is nothing but the consequence of
directly utilizing our knowledge of the leading term of the asymptotic
expansion of the solution near the crack tip (compare with (58)).
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Analogously, we can define the respective pairs of boundary condi-
tions in the regularized formulations. With respect to the dependent
variable w, we would take (31), together with the condition

ow

t,1— 3
w ( e) + €50

(t,1—¢) =0, (82)
while in analysis of the system based on the dependent variable (),
the speed equation (76) should be accompanied by

40(t,1—¢) + 38?;;(1‘, 1—¢)=0. (83)

2.5.2  General two term condition

For each of the problem formulations a boundary condition at the
crack tip, x = 1 — ¢, must be specified. As follows from (81), (82)
and (83), these are in fact very similar and can be generalized, for
the dependent variables w(t, x), U(t,x) and Q(t,x), into a common
notation f(t,x), with the notation convention fy = f(t, xx) that we
shall now follow.

So far, the regularized boundary conditions presented, following
the proposition of Linkov [56], are based on the leading term of the
asymptotic expansion. However, as shown in Section 2.2.2, the terms
that arise due to Carter leak off (4) will introduce a large disturbance
into the problem, which will in turn dramatically affect the accuracy
of the solution (as proven later in Section 3.4). To account for that
effect, we propose a modification of our the previous approach, in-
troducing a second asymptotic term that under likely circumstances
could be as significant as the first.

According to (26), (58) and (68), the following asymptotic approxi-
mation is acceptable in the proximity of the crack tip (x € [xn_2,1]),

Flt,x) = (11— e (11— x)% (84)

The values of a; and «, are known and depend on the chosen variable,
as well as the behavior of the leak-off function. Assuming that the last
two points of the discrete solution, (xy_1, fN—1) and (x, fn), lie on
the solution graph (x, f(t,x)), we can obtain egf ) and egf ) by solving

the system

e ()1 —xnn)® el (1)(1 - xno1)™ = fya

(85)
V(01— 1) + e (51— xw) = fu. ’

The equations (85), when solved, yield f(t, x) and consequently allow
us to obtain the boundary condition at x = 1 — e. The function f(f, x)
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can be used to extrapolate an extra point xyy1, which point might
then be used in a three point discretization scheme, which would
essentially lead to

fre1 + b i+ 00 o =0, (86)
where bV = b](f)(xN_l,xN, xN+1) - Note that we can always use one

less ODE, to match the indexing scheme and system size presented
in [44, 65]. It is, however, also possible to use f(t, x) to obtain % and
32712 directly, and this approach will be preferred later™>.

The current presented approach is a direct generalization of that

proposed in [56]. Indeed, if one takes e, = 0 in the expansion (84),

then the pair of equations (81) and (80) follows immediately. If txéf )
ocgf ) = 1, which means that the leak-off function ¢; is bounded near

the crack tip, the second asymptotic term provides a small correction.

In the case of the Carter law, where ocgf ) _ zng )1 /6, the second term
brings an important contribution.

(f)

The obtained coefficient e; ’, from (84), is substituted into the cor-
responding speed equation (31), (64) or (76) to produce the ordinary
differential equations for the crack length,

£L2:E< (w));;’ 412 2w

dt 3 \1 e~ — 317
d_, _ 128 Q) 3
EL (t) = o1 (31 ) - (87)

Note that the right-hand sides of the equations define the boundary
operators By, By and B from (32), (65) or (77), respectively.

We can observe that for all variable formulations, the generalized
forms of the tip boundary condition are very similar.

In the case of the dependent variable U, apart from the expansion
(84) of the boundary condition near the crack tip in the linear form,

(u) (u)
egu)(t)(l —xn-1)" + EEU)(t)(l —xn_1)2 =Uy_1

(u) (u)

W W (88)
ep (A —xn) Fe (1 —an )" =Uy

we can instead use a nonlinear type, using the relationship between
U and the crack opening w,:

w 2@ w )
eg )(t)(l_xN—l) ! +e§ )(t)(l—xN_l) 2 = B

v “(w) (X(w)
() (1= xn) + el (B (1 —xy) = YU

%

(89)

An extensive practical study of many crack tip boundary condition variations was
made to arrive at this conclusion.
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(f)

A similar exchange of the underlying ¢,"" and eéf ) could also be
made with the ) variable, but it would be less intuitive to write
(for example,% vs )- Note that the two term expansion (88) of
the function U is less informative than the same expansion for the
function w (or ). The Carter type term is cleared by the second term
of expansion océw) — 1:—% (2.2.2), while in the case of U the two term
expansion of w, (26), after cubing produces

2 a(w) (
8(1—x)+w%w1(1—x))3+2 + wow? (1 — x)
34 () 1,9y (®@)

(w) ;
20 1 o((1 - x)minGGHas” 52

U(t,x) =w 32"

+w}(1 - x)

(90)

Thus, by taking two terms of U, we only account for wg and w%wl,

while the two components w3w; and w? are lost. Therefore, using the

modified condition (88), we can expect a better performance from the
solver.
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PKN MODEL NUMERICAL WORK

Having reformulated the classical PKN model in previous Chapter
2 it is time to implement and test those new ideas. Therefore this
Chapter focuses on numerical programing, testing, and comparing
results.

Section 3.1 analyzes problem stiffens, and proves that the PKN
problem formulation is indeed stiff.

Section 3.2 outlines the numerical procedure prepared for stiff
ODE solvers.

Section 3.3 shows results of hundreds of tests with various ini-
tial conditions, and tests reliability.

Section 3.4 shows that the developed code produces accurate re-
sults when tested against numerical benchmarks. The accuracy
gains are mostly attributed to the better, new, two term asymp-
totic boundary condition at the crack tip.

Section 3.5 is a comparison with results by other authors ob-
tained by other means. Here it is implied that the accuracy of
this work is greater than those of other authors.

Section 3.6 explains some implementation details which allowed
to gain further accuracy and performance gains.

Section 3.8 presents algorithms for handling with closing frac-
tures and leak off phenomena.

Section3.g shows the outcomes of using real life inputs in a sin-
gle fracture simulation.

The Appendix A.4 includes some sample source code, a bare mini-
mum required to reproduce single fracture simulations.

43
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——stiff method
——nonstiff method

t

Figure 7: Two solutions to a van der Pol Equation problem [104]. Nonstiff
method results in oscillations that fall out of sync, compared to the
more accurate stiff method.

3.1 STIFFNESS ANALYSIS

Before attempting to solve the single fracture formulation presented
in previous the Chapter 2, lets perform a stiffness analysis of the
problem. Stiffness is a phenomenon that is rather hard to define ex-
plicitly. Some models may result in systems of equations that are not
numerical stable’, unless tackled with stiff numerical methods [102].
A good example of such a system is based on the van der Pol Equa-
tions [104], whose solutions are osculations with very sharp turning
points. When a nonstiff method is used, the turning points are much
harder to detect, and the time steps may not be properly adjusted.
As a result the method fails to detect these important turning points
at the appropriate times, resulting in misrepresented oscillation pe-
riods after a few cycles, as shown on Figure 7. Note that this mist-
imed oscillation means that if someone was to measure a value at
some specific time the answer could be off by multiple orders of mag-
nitude.Nevertheless, the nonstiff method can be used to find an in-
accurate solution to a stiff problem. A more convenient and casual
definition of stiffness would be how difficult a given problem is to
solve numerically in terms of solution accuracy, stability and expense

1 Unsolvable due to technical reasons.

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]



3.1 STIFFNESS ANALYSIS

in time®. Similarly in the case of hydrofracturing problems there is
a strong coupling between the tip region, and the rest of the solu-
tion which means that a small misrepresentation of the tip region’s
behavior will have a significant effect on the whole solution.

The stiffness of this problem will be measured by the condition ratio
k4 [4]. This ratio reflects disproportionality in the effects on the so-
lution of the various solution components. A high x4 indicates that
some solution components have a much greater effect on the overall
solution than the others.

The Reynolds equations, written in the different dependent vari-
ables (32), (65) or (77), can be written as a spatial derivatives, using
the three point central finite difference, as in Appendix A.4.3. This
system can then be written in the form

where F = F(t) is the unknown solution vector

F=[f(t,x1), f(t,x2),..., f(t,xn), L2(1)], (92)

and has dimension N + 1. The system is non-linear, therefore matrix
AY) is a linearized representation (A/)(F) ). while the vector G(/)
would generally be leak off dependent. The condition ratio x4 can be
calculated from the linearized matrix A (F),

f) _ ’)\max‘

KA ’/\min’

Here |Ayax|, and |Ay, | are the largest and smallest eigenvalues of lin-

earized matrix3A(f) (F). In a discretized system containing a second

derivative, the stiffness behaves quadratically with N2, in an obvious

result, however the parameter @), which will be approximated nu-

merically, can be used as a quantitative measure in selecting the less
stiff variant of the dynamic system.

The analysis should begin with an approximation of @) for all the
considered variants of the dynamic system. In the case of the () vari-
able, an alternative condition based on fluid balance can be used for
x = 0 (74), in addition to a Neumann type boundary condition based
on qo (73). These two strategies will be referred to as ();) and )y
respectively, and the stiffness will be measured for each. Since ()y)
leads to a slightly different form of AV )(F), different value of @/
should be expected, while ()(,) relies on a three point approximation
similar to that used for the w and U system.

~o)IN?, N - . (93)

A stiff method will need far fewer time steps for a stiff problem when compared
with a nonstiff method, which should result in a shorter computation time.

A is in fact the Jacobian explored later in Section 3.6.4 and 4.5.2. Some techniques
of for solving systems use the linearized version directly, making this a relevant
method for measuring stiffness.
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It is obvious that all six variants of benchmark solutions under con-
sideration (see Appendix A.2) result in different values of A). The
computations were carried out on two types of mesh, uniform (258)
and non-uniform (259). For each of the benchmark solutions, we ob-
tained a constant condition ratio, independent of time, despite the
fact that A(Y) depends on time. The values of condition ratio x4 vary
for different meshes.

Figure 8 displays values of x4 for various choices of N, with three
benchmark and mesh combinations. The least stiff formulation is U,
which results persists for all other possible test scenarios. However,
the stiffness of w in comparison to the() formulation depends on the
type of benchmark. The change of ratio from 1 : 1 seems to have a
negative effect on the w system relative to its effect on (). The bound-
ary condition () (1) (74) also has a negative effect on the stiffness of ()
and should be replaced with €),), which change will have no impact
on the accuracy of the solutions.

As anticipated, the estimation (93) holds true only for sufficiently
large N. The threshold value of N depends on the chosen ¢, and
the transition takes place at approximately ¢ ~ % . The Figure 9a
shows two regimes, N2 for ¢ > %, and another for ¢ < % Thus,
for a fixed number of grid points N, there is a critical value of the
regularization parameter &;(N), for which the stiffness characteristic
changes behavior. By taking ¢ < &;(N), we appreciably increase the
system’s stiffness.

(1)

The choice of spatial discretization between the uniform x,’° mesh
(258) and the x,(ﬂ2 ) mesh (259) has an effect on the stiffness. As pre-
dicted in [65] the a2 ) mesh improves system stiffness by about an
order of magnitude compared to the uniform mesh, when the opti-
mal value of ¢ is used. On Figure gb, we can see that for N ~ 10 and
e = 1073 the x?) mesh had its lowest stiffness for the optimal value
of 6 = 2. However for N > 10, the optimal value of § changed, to the
optimal value of § ~ 2.5, obtained experimentally.
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w

——

- 1

5 )

10 10° 10
N
(1)

(a) ratio Q;/q9 = 0.9 on x,,” mesh

(b) ratio Q; /g9 = 0.9 on x,(nz> mesh

(c) ratio Q;/q0 = 0.5 on x,(nz) mesh

Figure 8: Stiffness in the logarithmic scale, defined as the ratio of the small-
est and largest eigenvalues in the linearized matrix A (F) (e =

10’3,111(1)). A higher Q;/qo ratio, indicating that the majority of the
pumped in fluid leaks off, results in stiffer problems.
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Qi/q0 =09 Q1/90 =05

Dol L) g P ] 4P

q; 1
@ estimated for the system based on variable w
x,(nl) 6.5e+0 |6.6e+0 6.8e+0 [1.8e+1 [1.8e+1 | 1.8e+1
(2)

Xy | 1.7e+0 [1.7e+0 [1.7e+0 l4.6e+0 Q.7e+0 | 4.7e+0

@ estimated for the system based on variable U

X' | 3.0e+0 [3.0e+0 [3.2e+0 6.0e+0 [6.1e+0 | 6.2e+0

Xm | 7.5e-1 |7.7e-1 |8.1e-1 [1.5e+0 [1.5e+0 | 1.6e+0

@ estimated for ()(;) based on condition (74)

x| 4.8e+1 4.8e+1 lg.9e+1 [1.7e+1 [1.7e+1 | 1.7e+1

Xy | 1.2e+1 [1.2e+1 [1.3e+1 [4.3€+0 [4.3e+0 | 4.3e+0

@ estimated for ()(3) based on condition (73)

1
x,(n) 2.3e+1 [2.2e+1 [1.9e+1 9.6e+0 [1.0e+1 | 1.3e+1

xr(nz) 5.8e+0 |5.7€+0 |4.7€+0 R.5e+0 [2.6e+0 | 3.5e+0

Table 1: Values of @f) (93) for different variable formulations and bench-
marks. (¢ = 103 was used with grids (258) and (259) N = 1000, the
ratio Q;/qp ratio, indicates how much of the fluid leaks off)

Table 1 shows values of @f), with a fairly large N = 1000, for the
Carter leak off type benchmarks (A.2). The displayed values prove
that x,(n2 ) offers up to five times lower stiffness, for the considered
scenarios.

The results of the stiffness investigation are collected in Table 1 and
Figure 9. We draw the following conclusions from this data:

1. The nonuniform mesh reduces the stiffness up to approximately
five times regardless of the solution type (Table 1);

2. The most important parameter to affect the stiffness property is
the relation between the injection flux rate and the leak-off to
the formation, Q;/qo, as can be clearly seen in Table 1.

3. When comparing systems based on the various dependent vari-
ables, the lowest condition ratio is obtained via the U formula-
tion, being approximately one order of magnitude smaller than
those of the alternatives. The worst stiffness performance is that
for the system corresponding to the () variable. However, in
some cases () may produce a lower stiffness than w;

4. The value of the regularization parameter ¢ significantly affects
the stiffness of the dynamic system.

5. The estimate (93) is valid for most values of N, if ¢ > %
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(b) Stiffness for the w system on the x,,’ mesh (259), for various choices of
6. The results were obtained on the uniform mesh (258), are shown on
Figure 8a, and overlap with those foré = 1.

3

Figure g: Effects of different choices for ¢ and J on the problem stiffness.
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3.2 DYNAMIC SYSTEMS WITH ODE15S
3.2.1  BDF and ODE solvers

Backward differentiation formulas are a set of implicit multistep meth-
ods designed to solve systems of stiff ordinary differential equations
[96]. These formulas were originally developed by Gear [103] and are
sometimes called the Gear method.

BDFs can be used to solve initial value problem of the form

y' = f(ty), ylto) = yo. (94)

The general formula for a BDF method is

Z aYnik = hBf (tuts, Ynts), (95)
k=0

where h is the step size, a; and B are coefficients dependent on the
method’s order s. Although the general formula might not be famil-
iar, the 1% order BDF is something that appears in all introductory
numerical analysis courses,

Yn+1l —Yn = hf(tn+1/ yn+1)/ (96)

and is simply the backward Euler method for differential equations.
This is not yet a multistep method, as only one known point y, is
used in the approximation of the new solution point y,1. The ond
order BDF formula is given by

%hf(thrZ/ yn+2) = Yny2 — %yn-i-l + %yn (97)
This is a multistep method as this approximation uses two known
data points v, and y, 1. Further BDF up to 6" order were derived by
Gear [103], where the order of the formula is the number of backward
points used. Up to 6 points are used in 6/ order formula, and this is
the last zero-stable# BDF [28].

BDF are the most popular methods used in stiff solvers [68], which
can be attributed to several factors, including the good accuracy and
stability involved (as will be shown later), and the ease of re-using
essentially the same algorithm for each order of method. When using
the Euler method, the main challenge is in matrix inversion. Adjust-
ment of the solution vector so that it is a sum of several known previ-
ous points is a simple task, so higher order BDF are no more difficult
to use than the Euler method. The constant coefficients a; for each
order were derived by Lagrange polynomial interpolation. Thus, the
higher order BDFs rely on more data points, introducing greater ac-

4 Further order formulas will not converge to a solution.
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curacy. However, the method simultaneously becomes less stable, as
the approximation must employ a much more complex polynomial.
Proper usage of this method requires a balance between that high
accuracy of the higher order formulae, and the improved stability of
the lower types.

The most important advantage of BDF methods, in the view of
this work, is the straightforwardness of applying these methods to
the previously formulated PKN problem. For stiff BDF based solvers,
as well as all other ODE solvers, the problem must be described as
an IVP (94). Consequently, these two parts of the problem must be
specified:

¢ The initial value yo, here a vector value of N 41 elements, where
N corresponds to the grid size (Appendix A.1). yois built as an
evaluation of the initial opening w. (23) at each of these points.
This vector is then amended by the squared initial length /2

8
= {w.(x1), wi(x2), ..., wi(xn), 2}; (98)

e The function i/, the rate of change of this system of ODEs. This
function takes a vector with N + 1 elements, as the argument
y(t), and then returns the corresponding y’ (¢,y(t)) as another
vector of N + 1 elements. The operator A (32) is used to produce
N ODEs, one at each grid point, and B contributes one extra
ODE.

y' = {Ay).B(y)}
= { A1~ yN+1), A2 (V1. N YNS1), - - (99)
AN (Y1.NYN+1), By1n) }-

Given a choice of yy and an expression for y'(t,y), the solver is
tasked to perform integration from some initial time t to a final time
tend- A solution, in the form of a two dimensional array, is then even-
tually produced, that consists of the solutions y at each time step
considered,

y(to, ooy tend) = {w(to, ceey tend/ xl),w(to, ceey tend/ X2), e

(100)
7 w(t()/ ceey tend/ XN), Lz(tOI eeey tend) }

Although the above presents how w formulation (32) can be tack-
led with ODE solvers, other formulations U and Q) (65), (77) can be
implemented in similar manner.

Having stated that the problem can be solved with common stiff
ODE methods, it must be then decided whether to use an existing
solver or implement a new customized version. This decision is not
trivial, as there are advantages and drawbacks associated with both
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choices. Attempts to develop specialized BDF solver, as well as an-
other based on the alternative Cranck-Nicolson methods were made.
These attempts however exposed various issues that must be resolved
to make a properly working solver, even if it needs to work only for
a particular PKN formulation. Apart from integrating the function,
a good solver performs a number of other tasks including error ap-
proximation, time step handling, event detections and a number of
performance and stability tunings. Writing a new solver would mean
dealing with all those issues unnecessarily, in a repetition of someone
else’s work. The undertaking would pose a valid theoretical challenge,
but let us remind ourselves of an old software development principle:

Do not reinvent the wheel,

which in this case translates into ‘save time and effort by using
existing, well tested and understood solvers’. The development of a
solver could easily be the sole subject of another thesis. This work will
therefore first attempt to formulate a novel and solvable fracturing
problem, and then seek in detail to improve computational efforts.

The single fracture code will be solved using ODE15s, one of the
solvers available in MATLAB’s ODE suite, that is specially designed
to deal with stiff problems [62]. There are some very good texts [7]
that clearly describe the inner mechanics of this solver, and that can
be recommended to anyone interested in the subject. As a brief sum-
mary it should be mentioned that ODE15s is based on two implicit
sets of formulas: NDFs and BDFs, which are the direct opposite to
explicit Runge-Kutta methods that some authors insist be involved
[65]. Numerical differentiation formulas (NDFs) are a modification of
BDFs, but with better usage of predicted values.

An example simplified MATLAB script that obtains solution to a
self similar problem is presented in Appendix A.4.1. The implemen-
tation is relatively straightforward, since ODE15s is quite easy to use.
The object orientated approach is used to divide tasks into separate
modules. The main class is CrackSystemW (Appendix A.4.2), which
holds a general IVP made from expressions (98), (99), (100).

3.2.2  Building y’ for ODE solvers

This section should explain how the w problem formulation is imple-
mented into single fracture code (Appendix A.4).

The function representation i’ (99) is dynamically passed at run-
time (line 41 in A.4.2) to ODE15s, as a function reference (subroutine)
with simple signature that directly translates to ' = f(t,y) (line 47 in
A.4.2), thus the ODE solver does not know anything about the behav-
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ior of these system upfront. The output value vector can be obtained
in virtually any manner.

There are multiple approaches for obtaining the solution vector. An
old school approach might treat the problem as

Y =AY + G, (101)

with linearized mass matrix A, and leak off dependent vector G.
This method would require multiple iterations, to finally produce the
return value of the sought after ¥’ function, as this problem is nonlin-
ear.

The above approach is neither efficient (unnecessary iterations and
sparse matrix creation) nor straightforward. As the problem requires
determination of Ay, ..., Ay at points x1, ...x,, the operator.A for each
of the three variables w (29), U (62), and () (72) is evaluated separately
at each point,

y, :'Al:
A = 1 {1w3x3y1+3 (ayz) 4 332%]_ (x;)
iw v | 3%0%i5 Y Y; o qi\Xxi
2
Aiu= 55 [WS 1ay’+(ay’) +3yzay’] = 3y/qi(xi) (102)
— ay; 2y,
Aig= yNL |:(azc) axy2+ wo (yl xax>:| Qi(x;)
i=1,...,N.

Since Yi.N = W1..N OT UlmN or Ql,..N and YN+1 = Lz. The value
of asymptotic term wy is easily interchangeable with Uy and g, due
to (59) and (69). Furthermore, the operator B does not differ signifi-
cantly between systems, so it is possible to interpret the problem as
if only the first term wy is needed. Then, the extra ODE governing B
is simply

2
y§\]+1 = Bw,U,Q = §w8 (103)

It can now be seen that for all the variable formulations, the only ac-

tual unknowns when constructing y/ are gzl, e yzl, wo and g;(x;) . This
means we can handle all the variable formulaltlons with essentially
one common algorithm for building y’, presented as Algorithm 1.

The equation 102 can be directly translated to code for each grid
point (line 76 in A.4.2), as can the additional equation (103) (line 81

in A.4.2), where the values of y - and 3 ik y l

should be computed before

(102) is evaluated. For the mterlor of the grid x» N-1, @ numerical
scheme such as central finite differences can be used, where the de-
tails are outlined in Section (3.6)). The boundary values at grid points
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x1 and xy must be treated separately with the boundary conditions.
Three subroutines are therefore needed to evaluate

left side BC for xq
Ay %y _ o N
o 9l derivative approximation scheme for x n_1 (104)
1
right side BC for xn

The leak off g;(x;) requires usage of an additional code handle, the
details are presented in Section 3.8.

In conclusion, the subroutine for y’' is designed here, so that it
uses four other subroutines: the left and right side BC, the deriva-
tive approximation, and the leak off handle. This is shown in the
sample code at lines 64-73 A.4.2. The object representations of these
are passed through constructor (line 14 A.4.2), and can be easily re-
placed by the different implementations, allowing experimentation
with many different ideas. Further, Subsections 3.6.1 and 3.6.3 show
what happens when some different approximations of the derivatives
are considered.

3.2.2.1  Left BC

Lets consider one variation of left side BC, derived explicitly for w,

a1 ML(t) 1
& %(t)yf% (105)
Py 2 4 ML(H)qo()y;* 6
Tx% ~ <_3C2a+362k_x22 Y1+ (106)
_Eb + i + <—2C>
X2 xz’2 72 X2 s
where

2(X2—X1)’ 2 X2 — X1 X3 — X2 ! 2(X3—X2)'
(107)
This left side BC relates the first derivative (105) directly to the fluid
pumping qo. The second derivative (106) is obtained by differentiating
a cubic polynomial®. Similar expressions can be derived for the U

5 A cubic polynomial ax3 4+ bx? + cx + d can be interpolated to match points (x1,w),
and (xp,wy), such that its first and second derivatives at x; match 105 and 106
respectively, providing four conditions for the four unknowns.
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and () variables (but not if the alternative form of the () boundary
condition (74) is used) . Appendix A.4.8 shows example code.

3.2.2.2 Right BC

The value of wy is best found as a byproduct of the right side bound-
ary condition. Several right side BC versions were tested, as (85), or
(79), (80), (81), (82), (83) can be implemented in multiple ways, and
the best found was to consider the following two equations:

wo ~ A1yn—1 + Ayn,

(108)
w1 ~ Biyn-1 + Bayn,

where the constants A;, Ay, By, B, are based on the last two grid
points,

@I

(- xN—l)%>_1
(1—xn)5 ’

1
1—xnv 1)\2
A2:_<le> Ay,

Ay = ((1 —XN-1)

Ty (100)
A
Bi=— —
(1—xn-1)e
1 A
B, = - 2

U=

(1-xn1)2  (1—xn1)

Again, the constants A;, Ay, By, B presented here were derived
for the w variable system, but it is possible to do the same for both
U and ). Having found wy and w;, these values can then be used in
(102), and the right end derivatives directly found,

dyn W 2wy 1

duy 3 o 2 o (110)
azyN—_%(l_x )_g—ﬂ(l_x )_%

oxn 9 N 4 NI

This corresponds to implementing (85) (or (88), or (88)). See Ap-
pendix A.4.9 for example code.
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input :y () as a vector {y1, Y2, ..., yn, YN—1} equivalent of

{wl,w2,..., wnN, Lz}
output:y’ () as a vector {A;, Ay, ..., An, B}

q: (¢, zc,) +— leak off handle (y (t));
W 9V . Jeft BC (y (1)) ;

dx1” 9x2

) 02 .
wo, azz, axyg «— right BC (y (t));
fori < 2to N—1do

dy; Ay . . . . .
‘ 32 axlg <— derivative approximation scheme (y (t)) ;

end
fori <+ 1to N do

dy; %y;
e A (1), 3 g )
end

Yns1 < B (wo);
Algorithm 1: The procedure for obtaining y’ ()
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3.3 SENSITIVITY TO INITIAL CONDITIONS

Some calculations employ zero initial crack width and opening as an
initial condition[106], while others take some known non zero result
and treat it as the initial condition [25, 65]. As was shown in the prob-
lem formulation (23), this work assumes an existing non zero fracture
aperture and length. In the work by [54], the self-similar zero leak off
solution (see Appendix A.2.2) was used as the starting point, which
idea was continued in [65, 44]. The initial conditions were therefore
based on a valid solution of existing hydraulic fracture. Some obvious
questions involve the implications of changing the initial condition on
the solution, and what might happen if the initial fracture does not
look like a casual hydraulic fracture?

To begin answering these questions, a set of test scenarios modify-
ing the conventional initial conditions was prepared. The approach
presented here uses the zero leak off self-similar solution (271), given
by Linkov [54], to identify w, and the corresponding I.. These values
are then altered to show some possible results of tampering with the
initial conditions. The outcomes will be presented as plots of multiple
possible trajectories of L(t), each corresponding to a different set of
values for w,, I, and a (which is the initial time). As an example of
such a plot, consider Figure 10 where several possible trajectories of
L(t) are shown.

The choice of initial values will affect the stability of the computa-
tions. Calculations which resulted in solver failures or incorrect fluid
balance values (see Subsection 3.8.4), or relative loss of over 5% of the
fluid, will be shown as dotted lines, or not shown at all. All the tests
will be carried out with initial time values of

4= {1078,10*6,10*4,10*2,1},

and multiple choices for the other parameters. A total of about 30-
50 attempted fracture computations for each initial condition varia-
tion are attempted. Three variants of leak offs will also be considered
for each of the test scenarios: zero leak off, Carter law ql(l) (4), and
the pressure proportional version ql(z) of the Carter law (4). Each of
these leak offs can be associated with a known large time asymptote,
(271), (274) or (275), to which the fracture length should eventually
approach. The zero leak off solution (271) is used both as a modifi-
able starting point and the large time asymptote for simulations with
no leak off. The numerical simulations, if successful, will eventually
tend to these large time solutions, but the transient regime will be
shown to be difficult to capture but very interesting in many of the
considered cases. One of the most deceptive aspects of this computa-
tion is the treatment of 7(x), where we will use two strategies (158)
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10%°
10°
=310’

107 - — —self similar H
large time asymptote
a=10"8
a=10"°
a=10"*
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Figure 10: An example comparison of lengths L(t) of five different fractures.
Despite different starting times a and initial lengths all of the
trajectories eventually converge to large time asymptote.

and (159). The first essentially forbids any leak off to the formation
from the initial segment xL(x) < I,, while the second allows for leak
off from that segment.
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3.3.1 Varying initial length

We first examine the effect of changing the initial length. To do this,
the original initial crack length [, will be multiplied by a factor B,

I, == BI,, (111)

where the considered choices for B are

B = {107,107, 107, 1072, 107", 10°, 10", 102, 10%, 10%, 10°}.
(112)
The most stable and predictable result is obtained with zero leak
off. Figure 11 shows that the trajectories either catch up immediately
to the asymptote, if B < 1 and we have a shorter initial fracture, or
wait for the asymptote, if B > 1 and we have a longer initial fracture.

Much more interesting results are obtained with leak offs ql(l) and

ql(z) (4), as shown in Figures 12 and 13. Here the numerical schemes
perform well if B < 1, but for B > 1 most of the attempts failed,
which might be attributed to ODE15s losing stability. Where there
was no leak off at the initial length (158), those fractures that were
successfully computed also waited for the asymptote, while, if (159)
was used, successfully computed fractures would shut down until
meeting up with the asymptote 12. (The mechanics behind computing
the shut down regime are shown in Subsection 3.8.3).

1010

107 = b

.
1 0—5 { i
-10
10 Il Il Il
10° 10" 10° 10* 10°

t

Figure 11: Varying initial length, zero leak off.

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]

59



60 PKN MODEL NUMERICAL WORK

10

10

10

10

10

10—10

! ! !

10°

10"

10" 10° 10

t
(a) No leak off at initial length (158).
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Figure 12: Varying initial length, Carter leak off ql(l) (4)
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(b) Leak off allowed at initial length (159).
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(a) No leak off at initial length (158).
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(b) Leak off allowed at initial length (159).

Figure 13: Varying initial length, pressure proportional Carter leak off ql(z)

(4).
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3.3.2  Varying the influx at crack mouth

We will now analyze how perturbation of the influx at x = 0 affects
the solution of the problem , by multiplying the pump in rate qo © by
a factor C,

q0 == Cqo, (113)

which takes the values

c= {107, 107 107,102, 107, 10", 10, 102, 10%, 10%, 10°}.
(114)

With the change of pump in rate, the relevant large time asymp-
totes (271) (274) and (275) also change. Solutions will now eventually
tend to asymptotes corresponding to the relevant value of fluid pump
in rate.

The result for zero leak off is showed on Figure 14, where no prob-
lems were encountered in the computations, and there were smooth
transitions from go = 1 to other zero leak off solutions. The leak offs
q(()l) and q(()Z) (4), as shown on Figure (15) and (16), again proved to
be much more of a challenge. The general tendency was again for
each of the trajectories to tend to its corresponding asymptote. For
C > 1 all the attempted computations succeeded. For C < 1, frac-
tures would enter shut down regime, even if there was no allowed
leak off at the initial length (158). This shut down could take place
on a newly opened fracture part (some of the blue trajectories on
15a). Interestingly the most reliable strategy with leak off is shown in
15b, where the effects of closing shut down regimes are most notice-
able, where only two trajectories were terminated prematurely. On
the remaining leak off enabled strategies more trajectories would not
reach expected asymptotes, and the worst results were obtained for
the later start points. Starting at later times required longer initial frac-
tures, and so a greater discrepancy between the zero leak off initial
fracture aperture and the solution with leak off.

6 Which in case of the aforementioned self-similar based initial condition has a con-
stant value qgp = 1 (see Appendix A.2.2)
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Figure 14: Varying pump in rate, zero leak off.
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(a) No leak off at initial length (158).
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(b) Leak off allowed at initial length (159).

Figure 15: Varying pump in rate, Carter leak-off q(()l) (4).
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(a) No leak off at initial length (158).
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(b) Leak off allowed at initial length (159).

2)

Figure 16: Varying pump in rate, pressure proportional Carter leak-off g;

(4).
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3.3.3 Varying the initial shape

2
—a—aj —3
- o 1
Q; 3
—~—Oéj =0
-1
i Qj = 3
—e—Oéj = 1

0 0.2

Figure 17: Initial opening . (x) obtained by changing power in A;(1 — x)%.
Note that there are no grid points (markers) after 1 — e.

This time we will investigate how the solution changes with a vary-
ing initial shape for the fracture opening w. (x). We use the function

Wi (x) = Aj(1—x)%, x <1—¢, (115)

where «; defines the shape of the initial fracture, and the constant
Aj is chosen so that the volume of the fracture is the same for each
considered initial shape.

The «; are chosen from

aj = {—g, —%, 0, %, 1, 2}, (116)

It can be argued that such conditions will create unnatural frac-
tures. Indeed, when examining Figure 17 it can be observed that for
a; < 0 a singularity at the crack tip is introduced. However, as the tip
is already coupled with a special boundary condition (84), the zero
value at the crack tip is implicitly built into the numerical procedure.
Furthermore, there is no grid point past 1 — ¢, so the produced ini-
tial opening has numerically valid values. There are numerous tech-
niques for obtaining initial fractures [8], so it is not inconceivable that

unusual shapes, close to the results for a; = — %, — %, 0, might be pro-
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duced under the right circumstances. Testing negative a; does add
some interesting hypothetical scenarios, and demonstrates the algo-
rithm’s behaviour with some extreme input values.

The behavior of the solutions for zero leak off is shown on Figure
(18). This variation again exhibited the least interesting features. The
initial disturbance in fracture shape would initially contribute to a dif-
ferent propagation speed, where the differences would however only
be visible at small times, thus some areas on Figure (18) are enlarged
to show these subtle variations. The larger values of «; would cause
initial fracture to retard growrth, while the smaller «; slightly acceler-
ated initial propagation. For a; = %, the shape closest to the zero leak
off solution A.4.10, the result was nearly identical.

For fractures with Carter type leak off q;(!) (1), shown on Figure
19, similar results were observed, with an exception of initial time
of t = 1. For that initial time, fractures with a; < % would initially
propagate faster, to open fresh fracture wall surface (surface not sat-
urated by cake layer build up), and then recede due to the large leak
off value, before finally propagating again. For values of a; > 1, the
trajectories first show shut down regimes, followed by propagation,
another shutdown, and then yet more propagation. This result could
not be obtained without sophisticated approach in the 7(x) approx-
imation 3.8. It is indeed a very interesting result, worthy of future
verification, but for our current purpose it is enough to point out that
such a result might appear, and that the single fracture procedure
described in this work can handle such a result.

With Carter type leak off q;2) (4), shown on Figure (20), a similarly
unexpected solution for initial time t = 1 is present. Here, fractures
enter extended slow shut down periods, which are terminated rapidly
at t ~ 10*. Note that this result was tested for conformance with the
fluid balance equation (Subsection 3.8.4).

The (158) interpretation of 7(x) is not shown here, as it was not
possible to obtain sufficiently good solutions.
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Figure 18: Varying initial shape, zero leak off.
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Figure 19: Varying initial shape, Carter leak off g;(!) (4). Leak off allowed at
initial length (159).
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3.3 SENSITIVITY TO INITIAL CONDITIONS

3.3.4 Fractures with added linear extension to the initial shape

5 le;l:tru, =1

extra —

extra — 9
l(wtra =10
© extra = 20

extra — 0

Figure 21: Aperture of fractures with added linear extension: Iloyy; =
1, 2, 5, 10, 20, 50.

For the last test of initial condition modification lets consider if the
initial shape can be enlarged by addition of a long and thin extension
at the crack tip. After this modification the crack should have the new
initial length

I, = l*(l + lextm)/ (117)

where [y, > 0 is an added extension factor. The initial fracture’s
width changes as well, where the self-similar solution is squeezed
along the x-direction, while a linear function allows for the contributed
by lextra. This change in initial crack width can be written as

« (x(1+1 if 0 <x < x,
wy(x) = e (¥(1+ extra)) posr= (118)
Wy (X(1+ lextra)) 11:—;‘* ifx, <x<1,
where x, is the connection point
1-¢
Xp = ——) 11
1+ lextm ( 9)

and ¢ is a small value used in the e-regularisation. (see Subsection
2.5.1).
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To account for the change in computation of opening times (158)
and (159), the originally used self-similar length inverse is changed
to

-1 _ -1 X
l N l <1 + lextm) ) (120)

which is later used to compute 7(x) in the numerical leak off scheme
(Subsection (3.8.2)). We consider values of oy, from

lextm = {1/ 2/ 5, 10, 20, 50, 100, 200} .

As the following modifications of the initial solution are much eas-
ier to visualize, a number of initial fracture openings are shown in
Figure 21.

Again, with zero leak off, the modification of the initial condition
leads to no significant difference. Figure (22) shows how each ex-
tended fracture remains essentially in the storage regime, until merg-
ing with the asymptote.

With leak offs ql(l) and ql(z) (4), the added linear extensions close,
and the trajectories approach the asymptote. This behavior is much
more rapid for pure Carter leak off g,(1) as shown in Figure (23), than
for the pressure proportional variant g;2) shown in Figure (24). Fur-
thermore, for both of these leak offs, the addition of linear extensions
does cause a great number of computations to fail. This could be used
as a starting point in a search for a more reliable algorithm.

The (158) interpretation of 7(x) is also not shown here, as the com-
putations failed in producing sufficient results results.
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Figure 22: Adding linear extension, zero leak off.
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Figure 23: Adding linear extension, Carter leak off g;(!) (4). Leak off allowed
at initial length (159).
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Figure 24: Adding linear extension, pressure Carter leak off ql(z) (4). Leak
off allowed at initial length (159).
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3.3.5 General conclusions from changing initial conditions.

One can observe that in the vast majority of successful computation?,
the outcome tended to the expected large time asymptote regardless
of the applied modifications to the initial conditions. This phenomena
can be explained by taking a closer look at Figure 25a. Although the
initial shape is much different than that formed in most fracture simu-
lations, which generally closely resemble the lead asymptote (1 — x) 3,
it can be observed that these fracture profiles adjust to resemble this
casual profile. Remarkably, in both cases, a new propagating front can
be observed that appears as a fracture within the main background
fracture. This inside fracture front itself propagates towards the tip
x = 1, and should be governed by an equation similar to the speed
equation (19) used for the main fracture front. Interestingly, as shown
by the initial condition variants with increased fracture lengths, the
fracture will not propagate significantly, that is remain in storage
regime, until this inside propagating front joins with the tip. This
process is however much more difficult to compute as the benefits of
e-regularization do not cover this additional in-fracture propagation
front.

Another general observation is, in the cases of leak off enabled sim-
ulations, that there seams to be a relation between the placement of
the initial starting point relative to the starting self similar asymptote
(271) and the large time asymptote (274) or (275), and the reliability
of computational scheme. The locations of all starting points (¢, L(t))
are shown on Figures 25b and 25c. If the initial condition places the
start (t,L(t)) above the large time asymptote, the computations are
apparently much more likely to fail. Also note that the less stable
a computation is the longer it takes to finish. The systems that suc-
ceeded in producing results would do so in just a few seconds, while
the failed computations could run for minutes before an invalid solu-
tion was produced, or a solver exception was thrown. This means that
the proper choice of initial condition will have a significant impact on
computational performance.

Other observations can be summed as follows:

¢ Altering initial conditions also indirectly changes the interpre-
tation of 7(x);

¢ The ability to handle closing fractures, and to be able to com-
pute the shut down regime, allows to perform successful simu-
lations for a wider range of initial conditions;

e The zero leak off self similar solution seems to be the most sen-
sible choice for the initial condition;

7 A successful computation means that a solution was obtained that ended at the
designated ¢,,; and that all the fluid volume could be accounted for (164).

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]

75



76 PKN MODEL NUMERICAL WORK

¢ Small initial times and short fractures are preferable as initial
conditions;

¢ Computations with zero leak off are much more reliable and
predictable;

¢ Other leak off regimes produce less manageable results.

moving inside fracture tip

—solution with added linear extension ||
——solution with o =

0.9

0.6 ]

305 i
0.4 = ]
0.3 ‘ .
0.2 .

0.1

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
T

(a) Evolution of two modified fracture profiles. Both of these eventually
converge to a more natural fracture shape. It can, however, be observed
that another internal fracture shape develops that overrides the initial

condition.
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(b) Successful and failed starting points, Carter(c) Successful and failed starting points, pressure
proportional Carter leak-off ql(z) (4)-

leak-off ¢;(1) (4).

Figure 25: General observations on modified initial conditions.
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3.4 COMPUTATION ACCURACY
3.4.1 Effect of tip boundary condition.

This presentation on computational accuracy begins with comparison
of the alternative approaches to defining the regularized boundary
condition at the tip point x = 1 —e&.

The first approach is based on the e-regularization technique, as
it was defined in [54] and [65], and will be denoted as U.(81). The
second approach takes into account the two terms of asymptotics
as described in Section 2.3 and Subsection 3.2.2.2. Additionally, for
variable U, two different forms, linear U; (88) and nonlinear U, (89),
will be considered here. Naturally a larger range of tip conditions
could be compared, but these three should be enough for the purpose
of this test.

We could expect that the two term conditions would have a clear
advantage, at least in cases when the solution smoothness near the
crack tip deteriorates due to the singularity of the leak-off function.
Table 2 shows accuracies obtained with the U variable system and
confirms such a prediction. Indeed, the relative errors of the solutions
oU; or 6U, are at least one order of magnitude smaller than those in
the case of JU,. Interestingly, for the non-singular leak-off function,
the improvement is even greater, especially on the uniform mesh.

These computations were also repeated for the three different bench-
marks reported in [65], which correspond to leak-off functions vanish-
ing near the crack tip. In these tests the accuracies of the systems with
conditions based on two asymptotic terms were always at least two
orders of magnitude lower than those reported in the previous paper
[65].

There is no observable difference between the solutions dU; and
oU, in Table 2, at least for those two benchmarks and this particular
choice of parameter N = 100. However, it will be shown later, for
larger N values or a more leak-off dominant regime (Q; /g0 ~ 1), that
the nonlinear condition has an advantage.
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Comparison of conditions (81), (88), (89)
0V Qi/g0=09 | ¢ Qi/g0=05
e=1] 102 [107* |10 | 1072|1074 | 10°°
oU, | x

1 1.6e-1 1.4e-1 [1.3e-1 |6.1e-3 3.7e-3 [3.7€-3

) 1.4e-1 [7.6e-2 6.3e-2 4.5€-3 [9.3e-5 8.9e-5
ou; x,(nl) 5.0e-2 [1.4e-2 [1.7e-2 [1.2e-5 [1.1e-5 [1.1e-5

)

)

)

5.0e-2 [1.7e-3 [2.0e-3 l4.9e-5 [B.2e-5 B.7e-5

ou, xﬁ,}
X' | 4-4€-2 |9.9e-4 [1.8e-3 |4.2e-5 8.2e-5 B.7e-5

4.4€-2 [1.2e-2 [1.3e-2 [2.2e-5 [1.3e-5 [1.3€-5

Table 2: Comparison accuracies obtained with different tip boundary condi-
tions. U, refers to one asymptotic term regularized boundary (81)
, while U; and U, correspond to two terms approximation (linear
(88) and nonlinear (89), respectively).
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3.4.2  Comparison of w, U and ) variables.

(b) AU, system, € = 10> (c) AQ system, e =5- 103

(a) Aw, e = 1073

Figure 26: Absolute solution errors for benchmark ql(l) with ratio Q; /g0 =

) (6 = 2) with N = 100 nodal points.

(2
m

0.9 and nonuniform mesh x

(a) 9w, e =103

(c) 0Q) system, e =5- 103

(b) oU,, system, ¢ = 10-°

il

Figure 27: Relative solution errors for benchmark g, ), with ratio Q;/q0 =

0.9 and nonuniform mesh xg ) (6 = 2), for N = 100 grid points.
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The presented variable approaches w (32), U (65) and Q (77), will
be now compared against each other. The relative errors of the respec-
tive dependent variables are difficult to compare directly in a sensible
manner. Although the errors for w and U are interrelated via the re-
lationship éU = 36w, their comparison with J() requires additional
differentiation of () to obtain w, which conversion could introduce ad-
ditional error. On the other hand, there exists a common component
in the solutions, the crack length JL, which can be used for direct
comparison.

To compute the accuracies of all three mentioned approaches, tests
on all six benchmark solutions A.2 for each variable were performed.

For each test, the grids x,(n1 ) and Jc,(ﬂ2 ) with N = 100 were used. It
ensued that the optimal ¢ differs slightly depending on the type of
mesh chosen, benchmark variant, and variable choice, so the choices
of ¢ were made such that each system produced the best results.

The results of these computations are collected in Tables 3, 4, 5 and
6. The relative error of solution Jf, the absolute error of solution A f
and the relative error of the crack length éL are presented. The results
of all variable formulations are at least of order 102 accurate for all
the choices of grids and benchmarks. However, as can be observed,
these accuracies improve even further for some more specific com-

binations of benchmark and grid. The xﬁs ) grid always offers better

accuracy than P, by about one order of magnitude. By compering
0L, we can conclude that the Q)variable offers the best accuracy. Nev-
ertheless, the accuracies obtained using the w andU variables could
also be considered acceptable, and these approaches might be more
straightforwardly used. The time taken by ODE15s to obtain these
solutions was similar for all the variables, seemingly offering no sig-
nificant advantages in computation time. Additionally, Figures 27 and
26 show the distribution of the solutions’ relative and absolute errors.
These are stable in time, and quite similarly distributed if relative er-
ror is taken into account, though they could be affected by a common
significant source numerical error (this will be dealt with in Section

3.6).
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Dynamic system built on the variable w

Qi1/90 =09 Q;/90=0.5

1 2 3 1 2 3
L [ a7 | a7 [
sw | x| 8563 p.4e-3 [5.6e3 [5.2¢-3 h.0e-3 3.5e-
w | Xy .5e-3 [5.4e-3 [5.6e-3 |5.2e-3 l.0e-3 [3.5€-3
x,(;?") 2.2e-3 .6e-3 2.ge-3 [1.8e-3 [1.9e-3 [2.0e-3
Aw x,(ﬂl) 7.4e-3 9.1e-3 8.8e-3 l4.3e-3 l4.6e-3 \4.7e-3
x,(nz) 2.8e-3 (3.0e-3 [3.2e-3 P2.1e-3 p.1e-3 [2.2e-3
oL x,(nl) 1.2e-3 [1.3e-3 [1.1e-3 [5.2e-3 |5.3e-3 |5.2e-3
(2) _ _ _ _ _ _
Xm | 4.0e-4 3.8e-4 [3.1e-4 [1.8e-3 [1.8e-3 [1.8e-3
Table 3: Performance of the solver based on the dependent variable w for
N = 100 grid points and various benchmarks. Values of the regu-
larized parameter are e = 51073 and ¢ = 1073 for the meshes for
D and x{? respectivel
" by pectively
System built on U; and condition (88)
Qi1/90 =09 Q1/q0 =0.5
1 2 3 1 2 3
L [ [ [ o7 o
(1) _ _ _ _ _ -
oU | x, " | 1.4e-2 [1.0e-2 [1.2e-4 [2.0e-3 [1.4e-3 [1.1e-5
x,(112> 1.2e-3 6.0e-4 [2.5€-4 [2.2e-4 [1.7e-4 [8.6e-5
AU x,(nl) 7.1e-2 l4.4e-2 p.oe-3 6.6e-3 l4.5e-3 3.9e-4
xs,f) 3.1e-2 .ge-2 [7.9e-3 [3.5e-3 [3.2e-3 [7.9e-4
6L x,(ﬂl) 4.4e-4 2.8e-4 i4.4e-6 14.3e-4 2.9e-4 [5.6e-6
x,(112> 2.6e-4 [2.4e-4 [1.2e-4 Q.5e-5 [8.3e-5 l4.3e-5
Table 4: Performance of the solver based on the dependent variable U, for

N = 100 grid points, with the linear regularized condition (88), and
different ¢ for the uniform and nonuniform meshes (¢ = 10~# and
e = 1075, respectively).
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System built on U, and condition (89)

¢V [P 1 q? [ gV [ 47 ] Y

(1) - - - - - -

ou | x,” | 1.2e-2 9.2e-3 [4.3e-5 [1.9e-3 [1.4e-3 [1.3e-5

x,(,;z) 1.2e-3 6.0e-4 [2.5e-4 2.0e-4 [1.7e-4 8.6e-5

AU x,(ﬂl) 6.4e-2 l4.1e-2 [1.7e-3 6.5€-3 l4.4€-3 |4.0e-4

x,(112> 3.1e-2 2.ge-2 [7.9e-3 [3.5€-3 [(3.2e-3 [7.9e-4

oL xf(nl) 4.1e-4 p.7e-4 [1.5e-6 l4.2e-4 .ge-4 6.3e-6

x,(f) 2.6e-4 2.4e-4 [1.2e-4 @.5e-5 B.3e-5 l4.3e-5
Table 5: Performance of the solver based on the dependent variable U, for
N = 100 grid points, with the nonlinear regularized condition and
various benchmarks. Values of the regularized parameter are ¢ =

10~* and & = 10~ for the meshes for x,(ﬂl ) and xﬁ,% ), respectively.
Dynamic system built on variable ()
Q;/90 =09 Q;/q0=0.5

1 2 3 1 2 3

L [ 0 [ 47 [

6Q) x,(nl) 2.5e-3 B8.7e-4 [3.0e-4 [5.6e-4 [3.3e-4 W4.2e-4

x,(ﬂz) 2.0e-3 [7.3e-4 3.6e-4 W4.4e-4 2.7e-4 3.1e-4

AQ) x,(nl) 9.4e-5 [1.7e-5 |5.9e-5 [1.1e-4 [1.3e-4 [1.5€e-4

x,(,f) 1.9e-4 [2.1e-4 [2.3e-4 [1.3e-4 [1.4e-4 [1.4e-4

(1) ; : . . - -

6L | x| 2.7€-6 |5.0e-7 [1.7e-6 [2.1e-5 [2.5e-5 [2.ge-5

x,(ﬂz) 5.5e-6 |6.2e-6 6.7e-6 [2.6e-5 [2.7e-5 [2.8e-5
Table 6: Performance of the solver based on the dependent variable (), for

N = 100 grid points, where ¢ = 1072 for x,(nl), and e = 5-1073 for

NG

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]



3.4 COMPUTATION ACCURACY

3.4.3 Accuracy vs N and ¢

The plots presented in Figures 28 and 29 present relative accuracies,
the maximum dw, U, Q) and JdL for all of the considered variable
formulations, as functions of the number of grid points N. The used
benchmark assumes Q; /g0 = 0.9 (see Appendix A.2). Three different
values of the regularization parameter ¢ = 1073,10~% and 10~° were
used.

On Figure 28 two basic tendencies can be observed. The error de-
creases monotonically with N, up to a saturation level. This level is
different for all the dependent variables and values of ¢, and in some
cases is reached for N > 1000 (and thus cannot be identified in the
figure). The second trend appears when comparing results for differ-
ent values of e. For each dependent variable there exists an optimal ¢,
minimizing the solution error. This value however depends on N. It is
not surprising that the optimal stiffness properties and the maximal
solution accuracies are not achieved for the same values of the regu-
larization parameter e. To increase computational accuracy we need
to decrease ¢ and increase number N. Unfortunately, both of these
measures lead to an increase in the condition ratio.

Figure 29 compares the relative errors of the crack length JL . The
values of the relative errors df ={éw, U, 00} and the respective sSLU)
are directly interrelated, We now seek to identify this relationship in
the following analysis.

Using (84), and after some algebra, we reach

(f)
Of ~ (5e§f) + (5e§f) — (Segf))%e“z’“l. (121)
€7

For the benchmark ql(l), and Q;/qo = 0.9, which always provides

the worst accuracy in our computations, we can conclude that

dw ~ %(SLI ~ Swy + %(&ul — dwg) /e, (122)
8 6
6Q) =~ Swy + %(&01 — Swo) /. (123)

From (31) we can derive

0L ~ géwo. (124)

It is clear from relations (122) and (123) that the relative errors of
the respective dependent variables also depend on the quality of the
approximation of the second term in the regularized boundary con-
dition (84).

Interestingly, the results presented in Figure 29 show that the value
of ¢ which provides the lowest relative opening error éf of the de-
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pendent variable f does not necessarily give the best accuracy of the
crack length 6L. Moreover, the relation ¢ = ¢1(N) is much more sen-
sitive to the variation of N than &¢ = ¢;(N). Indeed, one can observe
local minima (see Figure 29 a) and b)) while there are no such in the
respective graphs for éf (Figure 28).
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Figure 28: Maximum relative errors dw, 60U and J(), against different N of

grid points, mesh x,(n2 ) (6 = 2), benchmark with ql(l) and Q;/q0 =

0.9. (U; and Uy, refers to (88) and (89) ).
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0 200 400 600 800 1000

0 200 400 600 800 1000

-8
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(c)e=10">

Figure 29: Maximum relative errors 6L for the systems based on the w, U

and () variables, against different numbersN of grid points, on

mesh x,(nz)(é = 2), benchmarked with ql(l) and Q;/q0 = 0.9. (U

and U, refer to (88) and (89).
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3.4.4 Different benchmark <y

The formulated benchmarks solutions (Appendix A.2.1) uses the pa-
rameter 7y, which value can be linked with fracture propagation regime
since L(t) = (1+ t)% (267). By testing against different values of
this parameter one can make prediction on accuracy if different prop-
agation regimes are encountered.

As can be seen on Figure 30, for all dependent variables the crack
length error rapidly decreases for v — —1/3. Indeed, this is the case
when L(t) ~ Lo, and crack propagation is minimal, which corre-
sponds to the storage regime, a stagnant static fracture. For w and
U solvers, JL remains very stable over most of the analyzed interval.
The solver based on () exhibits quite different behavior. For 7y greater
than about 1.4, the error decreases to achieve the level of its ultimate
accuracy, the same as for v — —1/3. Depending on the crack prop-
agation regime, this solver can give up to two orders of magnitude
better accuracy of L(t).

Figure 31 shows, that respective dependent variables openings are
much less sensitive to the changes of 7 that the crack length. In the
considered interval each solver provides a relatively stable level of
accuracy (within the same order of magnitude).This test proves that
using the solver based on () is especially beneficial when dealing with
the problems of fast propagating fractures (large values of 7), but
again all of the considered variable formulations produce relatively
good results.

10°°

10

10

T o 2 4 6 8 10
Figure 30: The relative errors of the crack length for different dependent
variables as functions of 7.
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Figure 31: The maximal relative errors of respective dependent variables as
functions of 7.
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3.4.5 Conclusions on numerical accuracy

The general conclusions on numerical accuracy analysis performed
in this Section are:

e Similarly as in case of the stiffness analysis (Section 3.1), the
solution accuracy is affected more by the value of Q;/q¢ than
by the leak-off function behavior near the crack tip. There is a
trend of simultaneous increase of the ratio Q;/go and the rel-
ative errors of dependent variables ¢ f. However this tendency
does not hold (or may even be reversed) when analyzing JL.

* In the case of the dependent variable U, the non-linear (89) vari-
ant of the boundary condition achieves the best accuracies in
terms of the variable opening relative error.

* When comparing 5L, the dynamic system for () gives the best re-
sults. The dynamic system for w is the worst performing scheme.

* Since () vanishes near the crack tip faster than the other vari-
ables, one might expect the worst relative error in this case. Sur-
prisingly, even when contrasting the relative (incomparable) er-
rors of the respective dependent variables with each other, the
system for () seems to be the best choice. The advantage of ()
over w and U is especially pronounced for the benchmarks vari-
ants with a higher ratio Q;/qo.

* Better solution accuracy is obtained for the non-uniform mesh
in almost every case.

To complete the accuracy analysis, consider now some critical regime
of crack propagation, and assume that the leak-off flux almost en-
tirely balances the fluid pump in rate. When taking the Carter type
benchmark (266) with b; = by, = 1, one obtains the fluid balance ratio
Q;/q0 = 0.9857. This gives very strong variation of the particle ve-
locity function along the crack length, ¢, = 2.07 as defined by (270).
Considering the previous conclusions on the influence of the ratio
Q;/4g0 on solution accuracy (which in fact confirms the observations
from [65]), one can predict that the solution error will increase appre-
ciably in comparison with the figures shown in Tables 3, 4, 5 and 6.
In order to verify this assertion the computations were carried out.
The results of are presented in Table 32. Here, the symbols 6U; and
oU, denote the relative error of U obtained for the conditions (88)
and (89), respectively. The subscript of 6L informs us which dynamic
system the corresponding result was obtained for.
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e=10"72 e=10"73 e=10"" e=10"°
R R A R R
ow | 1.6e-2 | 1.6e-2 | 3.4e-2 | 2.5e-3 | 6.8e-2 | 2.1e-2 - 8.2e-2

éU; | 1.9e-1 | 1.9e-1 | 8.2e-2 | 8.1e-2 | 1.0e-1 | 4.3e-2 | 1.5e-1 | 2.3e-2

oU, | 4.8e-2 | 4.8e-2 | 1.1e-2 | 6.3e-3 | 1.9e-2 | 3.2e-3 | 2.0e-2 | 9.1e-3

6Q) | 2.6e-3 | 5.0e-3 | 3.0e-3 | 1.7e-3 | 3.9e-3 | 9.9e-3 | 4.0e-3 | 3.0e-2

6Ly | 2.0e-4 | 2.6e-4 | 2.0e-3 | 1.8e-4 | 3.4e-3 | 3.9e-4 - 6.2e-4

6L; | 1.2e-3 | 1.1e-3 | 2.7e-4 | 1.3e-4 | 7.5e-4 | 2.8e-4 | 1.0e-3 | 3.2e-4

6L, | 2.5e-4 | 1.2e-4 | 1.8e-4 | 2.6e-4 | 2.5e-4 | 3.0e-4 | 2.6e-4 | 3.2e-4

0Lq | 8.1e-7 | 4.7e-7 | 1.1e-6 | 1.1e-6 | 1.2e-6 | 1.2e-6 | 1.2e-6 | 1.2e-6

Figure 32: Accuracies for the limiting (critical) variant of the benchmark so-
lution (Q;/q9 = 0.9857, v, = 2.07) . The blanks represents cases
when ODE15s could not complete the computations.
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Figure 33: The crack length evolution in time.

- - - early time asymptote
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Figure 34: The evolution of crack opening at zero point, w(t,0).

Although the benchmark solution used in this work (Appendix A.2)
includes the leak-off term with a square root singularity, there is no
analytical solution available in the literature for the Carter leak-off
(4)-

In [41] and [70], one can find the numerical results for this prob-
lem. However the original result by Nordgren [70] is presented as a
low resolution figure, making it difficult to accurately interpret the
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data. The more recent result by Kovalyshen will be used as a point of
reference, as it gives exact numerical values [41] . Unfortunately, the
authors provided only some rough estimation of the solution error,
and no direct comparison to a known solution, such as the zero leak
off result (271). The numerical method used in [41] is based on an
implicit finite volume algorithm. The data collected in their Table 1
(p-332) describes the normalized values of the crack length, the crack
propagation speed and the crack opening at x = 0, at a number of
time steps in the interval t € [107°,5 - 102]. Unfortunately, the precise
details on how this particular solution was obtained are not presented
in great detail.

In Table 7, the results of using this numerical scheme are presented
in such a manner that they should correspond to those obtained by
Kovalyshen [41]. Note that, due to different normalizations, the nor-
malized crack length, L, is two times greater than the corresponding
value in that paper. This data was obtained by ODE15s using the U
variable on N = 1000 grid points, which should give the best accu-
racy, as shown by the analysis in Section 3.4. Additionally, Figures 33
and 34 present the evolution of the crack length L(t), and the crack
aperture at inlet w(t,0). The data are presented against early time and
large time asymptotic models (the respective formula can be found
also in[41]), and the numerical results for the transient regime given
by Kovalyshen [41].

log(t) L(t) w(t,0) u(t) x 10
—7 | 3.283747e-6 | 3.988347e-2 | 7.9701
—6 | 2.049209e-5 | 6.298786e-2 | 7.9355
-5 1.265786e-4 | 9.915967e-2 | 7.8716
—4 | 7.660018e-4 | 1.551088e-1 7.7536
—3 | 4.456291e-3 | 2.397462e-1 7.5185
—2 | 2.412817e-2 | 3.629593e-1 7.1173
-1 1.163591e-1 | 5.326638e-1 | 6.5267

0 4.849863e-1 | 7.541837e-1 5.8885
1 1.779508€0 | 1.037495€0 5.4408
2 6.035529€0 | 1.403522€0 5.1993
3 1.968511e1 | 1.883411€0 5.0847
4 6.308563e1 | 2.518338e0 5.0378
5 2.006370€2 | 3.362113€0 5.0146
6 6.360179e2 | 4.485636€0 5.0071
7 2.013373e3 | 5.982935e0 5.0029
8 6.369722e3 | 7.979082€0 5.0014

Table 7: Numerical solution of the PKN fracture with Carter leak off.
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Figure 35: The evolution of the normalized crack propagation speed.

The analyzed time interval is t € [10~8,108], where the initial condi-
tions correspond to the early time asymptote for = 10~8. The same
initial time was used by [41], but the authors there presented their
data starting from ¢t = 107°. In order to increase the legibility of the
graphs, the time axis is truncated to range t € [10*6, 5. 103], while the
complete data is presented in Table 7.

As can be seen in Figure 33 and Figure 34, the solution is indistin-
guishable from that of [41], due to the used scale. This type of graph
was used by Nordgren [70], and it should be no surprise that a better
presentation must be used to more usefully compare the solutions.
For this reason, Figure 35 shows the normalized crack propagation
speed, as defined by Kovalyshen [41] . The figure shows that this
work fits the asymptotes very well, which suggests good quality. The
solution by [41] approaches the asymptotic values much more slowly,
and the interval it was presented on was capped to t < 107> and
t>5-10°

In the analyzed case, the value of the parameter Q;(f)/qo(t) changes
continuously from zero time to t = 1. From the data presented in [65]
and in the paper, one can conclude that for N = 100 nodal points, the
relative error of the crack length changes from 107° to 10~* with the
increase of the parameter Q;/qo. On the other hand, analyzing the
data from Figure 28 and 29 (Q;/qo = 0.9), one can expect an achiev-
able level of accuracy of the order 107 for N = 1000. This suggests
that, the relative error of L varies between 10~# and 107°.

In order to additionally assess the credibility of solutions in this
work, computed for N = 1000 and presented in the Table 7, Figure

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]

93



94 PKN MODEL NUMERICAL WORK

36 shows the relative deviations dL between this solution and the
following other numerical solutions and asymptotes:

¢ early and large time asymptotes;
¢ the solution by [41];
* a solution obtained for N = 100 grid points;

¢ another solution obtained for N = 1000 grid points starting at
to = 10~7.

When examining the data shown in Figure 36 we can see that the
deviations of L from the early and large time asymptotes at the ends
of the considered interval are of the order 10~%. Moreover, the relative
deviation from the solution obtained for N = 100 points is of the
same order over the entire time interval. This discrepancy between
the reference solution and the solution for ty = 1077 decreases rapidly
with time, which confirms the credibility of the reference solution.

The relative discrepancies between the components of this work
solution and the solution by [41] are shown in Figure 37. Here d;,
dw(O,t) and d,, refer to the deviations of the crack length, L, the crack
opening, w(t,0) and the normalized crack velocity, u, respectively.

Considering the results presented in this Section, it is credible that
the data presented in Table 7 is of accuracy at least of the order 10~*
for both the crack length, L, and the crack opening at x = 0. Moreover,
in the considerable time range (107% < t < 10°), we can expect the
error to shrink by up to two orders of magnitude. The normalized
crack propagation speed u is computed with error one to two orders
of magnitude smaller. The level of accuracy for the results tabulated
by[41] can be estimated as 1072 =- 1072 for L, 10~* + 1073 for w(t,0)
and of the order 102 for u.
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Figure 36: Relative deviations from the numerical solution for L.
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Figure 37: Relative deviations of the solution of [41], in terms of length d,
inlet width d, ;) and normalized propagation velocity u, from
the results reported in Table 7.
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3.6 FURTHER IMPROVEMENTS TO DYNAMIC SYSTEMS
3.6.1 Derivative approximation schemes

For every numerical problem that uses a numerical approximation of
spatial derivatives, one must choose an appropiate scheme for mak-
ing this approximation. In this problem, a numerical approximation
is used to compute % and aa—jz, using the following numerical scheme.

3.6.1.1 Central Finite Differences

The most common approach to numerical approximation of deriva-
tives is probably finite differences. In this work a central scheme
with variable interval length Ax; is considered. This is an uncommon
choice as most sources present finite difference methods with fixed
point spacing. Our used method is defined by

ax % Y7

aiw‘ 1 1 N 1 Awgyr  Awy

0x2 Tk NZ Axk+1 Axk Axkﬂ Axk !
which may equivalently be presented in the computationally opti-
mized and matrix representation friendly form

ow 1 < Awiy  Awy )
Tl el e
Axpr1 Axg (125)

Jw

g|xk R AxWy—1 + brwy + cxwy i1 (126)
1
ap = ———~ 12
2(xg — x¢-1) (127)
1 1 1
b, = = < — ) (128)
2\ X — X1 X1 — Xk
1
k= s (129)
2(xg41 — xk) ?
%w
W|x R arWwy—1 + brwg + Wy q (130)
ay = 1 < ! + ! > ! (131)
T2\ o - x ) X xea
1 1 1 2
b= 2 ( n > (132)
2 \ X1 — Xk Xp— Xp—1 3
Cp = E ( 1 + ! ) ! (133)
T2\ - o) X - 33
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See Appendix A.4.3 for example code.

3.6.1.2  Quadratic Polynomial interpolation

An alternative approach is to interpolate a quadratic polynomial f(x) =
a(x — x;)? + b(x — x) + c. Given three points: x;_1, X, X;.; this
would give a system of two equations:

a(xp_1 — X)? + b(xp_1 — xp) = w1 — wy

(134)
a(xps1 — k) + b(Xpp1 — X)) = W — Wi
These would be solved by
Awgyq -1
a=-—"Ax — Awy | (Axg (Axy + Axpyq) )
Attt (135)
b :% — aAXpiq
Axyiq Y

As the last unknown is found automatically by setting ¢ = wy. The
values of f'(x;) and f”(xx) can then be found, and to find approxi-
mations for the derivatives use

877/()| ~ 1 AwkHAxk T Akaka
ox ™ T Axpq + Axg Axyiq Axy (136)
82w| N 2 Awgy  Awg 3
ox2 " T Axpq 4+ Axg \ Axgyr Axg )
or
ow
o |y R axWr—1 + brwy + Wiy (137)
b 1 Xi+1 — Xk (138)
g Xk+1 — Xk—1 \ Xk — Xk—1
1 Xi4+1 — Xk X — Xj—
b= ———— < S (139)
X1 — Xp—1 \ Xk — Xp—1  Xk41 — Xk
. . 1 X — Xj—1
L Xk+1 — Xk—1 (xk+1 - xk) ' (140)
and
*w
@\xk R arWi—1 + brwg + Wiy (141)
2 1
= Xk+1 — X1 <xk - xk1> (142)
2 1 1
by = — < + ) 143)
Xk+1 — Xk—1 \Xk+1 — Xk Xk — Xg—1 (143
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Ck = 2 < 1 > (144)
¢ Xk41 — Xk—1 \ Xk+1 — Xk ' 4

See Appendix A.4.4 for example code.

3.6.1.3 Cubic spline interpolation

An alternative approach would be to build a spline and differentiate
it to obtain an approximate derivative. A method of achieving this
is might be to use MATLAB'’s built-in function spline() to compute
the cubic spline, and ppval() plus fnder() to compute the % and %
values. This could potentially be a very good approximations, but
it has a high cost burden as it requires a solution of the separate
traditional problem to obtain the spline coefficients. Nevertheless, it
can be used as an exotic comparison point.
See Appendix A.4.5 for example code.

3.6.1.4 Finite difference with asymptotic approximation

Suppose that we have already computed the first and second asymp-
totic terms wy, and w, of the tip boundary condition (85). We can then
differentiate the two term asymptotic approximation (26) to obtain

gz{; =aywp(1 — x)4 !
+ aowi (1 —x)2" 1 4o ((1 — x)"‘rl) ,
2 x — 1. (145)
w _
S =aa(m — Dwo(1—x)"72

+ap(ay — 1)y (1 —x)272 40 ((1—x)%73),

This approximation would be very accurate in the crack tip region
x — 1, but should not be used over the whole interval. It is, however,
possible to combine this with the standard FD scheme,

w = w — asymptotics + asymptotics (146)

dw_ 9 (w — asymptotics) + asymptotics (147)
ox JXFD ymp axanalytical Jmp i
Pw P 0

w — asymptotic) + —— asymptotics, (148)

92 a2 (
dx axl—“D analytical
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where the result of the subtraction (w — asymptotics) is treated with
: d P - 3
the FD scheme (125) to approximate 5~ and pren while o and

5.z are the exact analytical expressions (145). To be more precise,
analytical

this method results in

ow 9
> ~3x (w—wo(1 —x)" —wi(1—x)*?)
+ awo(1 — x) 1 + apwy (1 — x)271,
Rw 02 (149)
Eedarre (w —wp(1 — x)x* — wy (1 — x)*2)

—+ aq (0(1 — 1)ZUO(1 — x)"‘l_z + ﬁéz(ﬂcz — 1)ZU1(1 — x)“Z_z.

The motivation behind this procedure is that the fracture width
w(x) is going to be very similar to its asymptotic expansion at the tip
region. The difference between these two should produce less error
when differentiated with numerical methods, which can be observed
in Figure 4oc.

See Appendix A.4.6 for shows example code implementation of
this idea.
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Figure 38: Comparisons of relative errors in approximation of aa—x and
against the zero leak off benchmark (271). The FD method with
utilized asymptotics clearly outperforms other methods, particu-
larly in those most susceptible to numerical error in the tip region

(x'?) grid, N = 100).
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3.6.2  “Hybrid” ﬁ%—tf system
In hydrofracturing problems, the discretization is much more diffi-
cult than the integration®. Indeed the three mentioned formulations
differ in spatial discretization, while retaining a common integrating
algorithm. The U formulation was derived because it offers a linear
first term of asymptotic expansion (58), which can be much better ap-
proximated via the finite differences method [54, 65]. The Q) formu-
lation, on the other hand, has the property where %—(x) |lx=1 = 0, which
also makes finite difference approximation much easier. We might ask
whether the gain in numerical accuracy is attributed to some improve-
ment in integration, or whether these formulations simply offer much
more accurate approximations of -2 and %, and thus the variables
under integration make no noticeable difference.

This question can be answered relatively easily, since the w and U
formulations are in fact very similar, and a “hybrid” mixture of these

two systems can be easily constructed as

Jw 1 oUu

9 3wk ot (150)

which may be alternatively written in terms of operators (32, 65) as

_ b
3w

Aw(w, L?) Au(w?, L?) (151)

The implementation of such a system is quite straightforward, as the
same function is used as in the case of the U system, except that the
inputs and outputs are multiplied. The important point is that the nu-
merical performance and accuracy of such a system can not be distinguished
from the original U formulation. The results produced by this mixture
are within the solver’s accuracy, and appear as they would with only
only the extra contributions from the insignificant double precision
disturbances caused by a few extra multiplications. Thus, presenting
any comparison of numerical results here would not be meaningful,
and show only the machine epsilon effects. This “hybrid” mix has
the benefit of improved differentiation (38) with respect to spatial

At least as it is generally observed for the PKN model in this work. Nevertheless,
the problem includes a moving boundary in a form of the crack tip, hence the dis-
cretization is much harder, especially if multiple fractures are involved. On the other
hand, many problems, such as 1D heat transfer in an uniform rod, pose much less
challenge when choosing the appropriate discretization method.
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variable x, and thus has the same advantage as U system. Integration
is, however, still performed on the w variable instead of U, but this
makes no difference as the output of the modified .A,, has the same ac-
curacy as Ay, and the significant amount of numerical error is introduced
during spatial discretization not integration. A similar mixed formula-
tion could be considered, where the U is worsened by reverting (151)
to the form

Au(U, L2) = 3w A, (U3, L2). (152)

Such a formulation would lose the benefits of improved differentia-
tion and consequently should be as accurate as the w system.

3.6.3 Better FD formulation

When constructing operator A we need to decide how to differenti-
ate with respect to the spatial variable x. As shown in the derivative
approximation schemes in Section 3.6.1, a proper choice can result in
several orders of magnitude in improvement of accuracy. When an
ODE solver is used, such as ODE15s, it is relativity easy to make the
differentiation scheme changeable within the operator .4, as shown in
Section 3.2.2. Thus, we can test performance of the same system, us-
ing different differentiation formulas or schemes. This means that for
each of the versions of differentiation scheme described in Subsection
3.6.1, we can build a version of A.

The results of using these four approaches (136), (125), (149), and
the MATLAB spline, are shown in Figure 39. Here it can be clearly
seen that the numerical error inherited form spatial discretization, as
shown on Figure 38, affects the accuracy of the solution. The finite
difference with asymptotic approximation approach (149) remains
the most accurate choice. Note that the gain compared to the worst
scheme in this particular case is three orders of magnitude, which is
a huge improvement as the best scheme does not requires a consid-
erable amount of extra computation, and the solver might actuality
decide to use less time steps due to better relative accuracies, thus
effectively reducing the computation time.
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Figure 39: Comparison of relative error opening dw for w systems using
various differentiation schemes, testing against the zero leak off

benchmark (271), on the x,(n2 ) grid, for N = 100.
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3.6.4 Jacobian Matrix pattern

The Jacobian matrix [98] is the matrix of all first-order partial deriva-
tives of a vector-valued function (such as (99)). Here the Jacobian ma-
trix | of y’ is an n-by-n matrix, where n is the length of y’. A column
element j is the partial derivative of i’ with respect to component i of
X,

ay} ]
E oo axn
] = oo (153)
W ... Yn
dxy 0xy,

This matrix is of particular interest to this problem as a number of
ODE solvers use it internally to perform Newton iterations and ob-
tain the next time step [7, 47]. These iterations are therefore repeated
a number of times, at least once for each time step. As an example
a simple implementation of the BDF method would have a number
of vector operations, including inversions of a product of the men-
tioned Jacobean and its numerical approximation. In a system of N
ODEsg, if implemented properly, the simple vector operations should
have no more than O(n) time complexity. Inversion and numerical ap-
proximation of a Jacobian on the other side are O(n?) if naive dense
matrix algorithms are used. However, the Jacobian of this problem is
not dense, in fact it has a well defined close to tridiagonal pattern

11 1 111
11 1 111
1 1 1 111
]pattem = h - - . (154)
1 1 111
1 111
111
111

This pattern can be obtained by analyzing the operators A and B.
First, the use of approximate spatial derivatives, (125) or (149), means
that there is dependence of each term y; on terms y; ;,y;, and y;, ;.
This forms the tridiagonal middle pattern. Operator A depends on
L?, which here is the last element in 1/, thus each y! is additionally
dependent on y;,. Furthermore each element of A is multiplied by the
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first term of the asymptotic, which is found using (85), and depends
on the two last points y;,_;and y,_,, thus the crack tip BC (A.4.9) and
normalization over L (18) adds the three right columns to the overall
pattern. Operator B also utilizes the first asymptotic term produced
by tip BC (A.4.9), so these three right columns include the last row. Fi-
nally the BC (24) at the crack inlet is implemented using three points,
hence an additional [,sern (13) = 1-

The tridiagonal structure with three right side columns (154) pre-
vails for all variable formulations w, U and Q. It is common for
all three previously considered spatial discretization (136), (125) and
(149) (all are dependent on tip asymptotes by tip condition, only (149)
uses them fully). In fact it is yet another argument for the superiority
of (149), as it means that the large O(h) cost is not increased. Unfor-
tunately, the spline formulation would yield a full Jacobian matrix, as
a consequence of the spline interpolation algorithm, thus no further
benefit of patterning Jacobian would follow.

This binary Jacobian pattern (154), when supplied to the ODE15s
solver [62] alone, allows us to save at least a half, if not a vast major-
ity, of the computation time needed for most of the problems tackled
by this work. If this pattern is not provided, a solver must assume
dense structure and compute an approximation for each matrix entry,
thus considering n? elements. If the pattern is used, only roughly 6n
elements, three diagonals and three columns are considered. There-
fore, from the algorithmic point of view, one could reduce O(n3) com-
plexity to O(n) when evaluating Jacobian matrix with known pattern
(154). For ODE15s solver this theoretical speedup can be tested by tim-
ing computations for different system sizes N, with both a provided
Jpattern and default dense option. Results of this test are presented
in Table 8 , where the benefits of using this pattern are made obvi-
ous. Thus if an ODE solver is to be used efficiently for a fracturing
problem, the Jacobian must be provided.

Further improvements could be obtained if the problem’s sparse-
ness is to used at the inversion stage of integrating algorithm . Here
the pattern Jyutern could be used to develop a custom made matrix in-
version, that would first reduce to a pure triagonal form by Gaussian
elimination, and then perform a standard Tridiagonal matrix sweep.
Such an algorithm would have O(n) time complexity, which is far
better than any generic dense system solving algorithm could ever
achieve, as they are generally O(n®). This will not be developed in
this work because of both deadline constrains and the fact that future
considered problems will disturb this neat [,sstern, and consequently
would make this algorithm improvement obsolete.
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N | default dense | | optional sparse |
10 0.095 0.058
20 0.108 0.058
50 0.11S 0.058
100 0.158 0.058
200 0.26s 0.06s
500 0.81s 0.08s
1000 2.38s 0.14s
2000 8.41s 0.26s
5000 37.90s 0.79s
10000 211.50S 2.43s

Table 8: Example times needed to compute the solution for a propagating
fracture with ODE15s, with and without using optional Jpattern. The
speed up obtained with the pattern varies from a factor of two for
small systems, to over a hundred for very large N.
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3.7 EXTRA TESTS ON CARTER LAW
3.7.1  Test with known q]’f

An additional test can be performed, using the general analytical
benchmark A.2.1, which mimics the behavior of the problem with
Carter Law leak off type. The leak off (3) can be split into two terms,

ql(j )(t,x), from the Carter law and the supplementary g7 (t, x). Since,

in the benchmarks, the exact values of g(t, x) (269) and 7(x) = L™!(x),

required for ql(j ) (t,x), are known, the term q}“ can also be found via

g (t,%) = qi(t,x) — g (£, x) (155)

If the analytical benchmark A.2.1 is limited to two terms, its com-

ponents (265)-(269) can be worked out, so that ql(l)(t,x) (4) can be
substituted into (155) to obtain

7 5
7i(t,x) =Wola+ )77 |37+ 1) (gWa (1 = x) 7 + SWR(1 —2) 7

55

S5 31— -t St — 0 o Leq ol
+ WA =) T W1 2)°) + = (1-37) (1 - x) i+
1 1 1
{716 ) 1 . —
LA >] —
(156)
The term ql(j )(t,x) = ——L__ can also be supplied analytically,

t—L-1(x

by inverting the known fracture(e )length L from benchmark (267), or
found numerically using a numerical procedure for T(x) = L™!(x), as
described in Subsection 3.8.2 (C(#) is set to one). This means that we
can construct a test that measures the effect of the numerical leak off
approximation. While no analytical solution for the transient regime
of the Carter law leak off exists, the benchmark solution can serve as
a relatively close counterpart.

The w variable system can be slightly modified such that the known
g term is provided, and only the remaining ql(l) term need be found
numerically. In other words, the operator A (32) is slightly modified
to include two leak off terms

ow 1 1 5 ow , [Ow 2 ;0%w (1) .
ot L2(t) [3w0xax +3x (8x> twog|—a —qn (157)

This gives us a setting to test the accuracy of the method for com-
puting leak off itself, and indirectly the accuracy of the transient solu-
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tion. Let us use the leak off numerical T approximation as proposed in
Subsection 3.8.2 and compute the system twice, once with analytical
and fully known leak off, and once with a numerical approximation
of ql(l) added to the known analytical part g;. In other words, the
idea is construct a specific example which serves as a middle ground
between testing against the known analytical and the unknown tran-
sient solution.

The results are shown in Figure 0. Interestingly, regardless of
the method used to compute the leak off function, the accuracy re-
mains unchanged. The computation time, and number of time steps
required is affected, as the numerical approximation forces the solver
to take more time steps. Note that this essentially binds the maximum
time step to the propagation speed. While the fracture opening w and
fracture length L apparently become predictable after a number of
successful time steps, the numerical approximation of 7(x) for each
grid point prevents the solver from increasing the time steps infinitely.
Numerical inversion of L~!, based on an interpolation of previously
computed time steps, will eventually produce a less accurate result
if the time step becomes too large. That is, T7(x) would be estimated
on history points that are too far away. This means that the strategy
shown in [106], and any publication that follows, where the time step
grows exponentially, will require a new time step strategy or a much
more sophisticated leak off computation algorithm than the one pre-
sented here, if the leak off is to be computed as a part of the unknown
solution rather than simply artificially analytically provided. On the
other hand the test shown here was relatively straightforward to set
up, as conventional ODE solvers are capable of effectively managing
the time step themselves.

Nevertheless this test proves that Carter leak off can be accurately
computed numerically, and suggests that the numerical accuracy is
unaffected by the leak off approximation used in this work.

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]



109

3.7 EXTRA TESTS ON CARTER LAW

(b) dwyax for partially numerical leak off

(@) 6wnax for full analytical leak off
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Figure 40: Results of using numerically approximated Carter type leak off
on w variable system.
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3.7.2  Remarks on the sensitivity of the Carter leak-off model.

It is well known that applicability of the empirical Carter law (4) in
the vicinity of the fracture tip is questionable [25, 40, 66] Moreover,
when combining Carter leak off with some non-local variants of elas-
ticity models (for example, the KGD model of hydrofracturing), one
obtains an infinite particle velocity at the crack tip. As a result, the
speed equation (12) cannot be applied in such a case. One way to
eliminate this unwanted behavior is to assume that the Carter law
becomes valid only at some distance away from the fracture tip (see
for example [66]).

The PKN model, which does not exhibit such a drawback, gives an
opportunity to assess how the solution is affected by a modification
of the classical Carter law in the neighborhood of the fracture tip.

Thus, let us consider two modifications. The first assumes that the
leak-off function is equal to zero over some distance from the crack
front (d > ¢). The second uses a constant value of g; in the same
interval, which value is chosen to maintain continuity of the leak-off
function. Note that both of these modifications change the volume of
fluid loss to the rock formation.

The relative deviations of the crack lengths for these modifications
from the original are shown in Figure 41. Results for two values of
d: d = ¢, d = 10¢ (for ¢ = 107°) are displayed. The symbol g, in the
legend refers to the cases when the leak-off function is complimented
by the constant value over 1 —d < x < 1. We can deduce that the
maximal relative discrepancies (up to 1%) appear at the initial and
large times. To explain this phenomenon, we evaluate the additional
volume of fluid retained in the fracture as a result of the modification
to Carter law . Taking into account (34), these quantities are AQ;(t) =
2D(t)v/d and AQ;(t) = D(t)V/d, for the respective modifications (see
(22) for D(t)). Note that D(t) = +/u(t)/t represents deviation for
the small time, while for large time, the effect of accumulation of the
difference of the fluid loss, fot AQ(t)dt = O(V/td), plays the crucial
role.

The above test proves that the application of the Carter law, modi-
fied in the aforementioned ways, is fully justified when one considers
the accuracies required in the practical applications.
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Figure 41: Relative deviations of the crack lengths for different variants of
truncated Carter law.
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3.8 EXTRA COMPUTATIONAL CHALLENGES
3.8.1  T(x) computation interpretations

To compute T(x), it is necessary to find the inverse length function
over the entire interval x € (0,1). The initial condition gives a non-
zero positive value [, (8), however information about the history of
the process, including the inverse length function, is not given in the
original formulation. It could be understood that the crack was pre-
viously opened and filled with fluid for some large unknown time,
or have been just opened and with an available well defined [~ (x).
The physical justification for the Carter law is that a cake filter layer
is being formed on the exposed crack surfaces [14]. Hence, one could
expect an impermeable layer to already exist on the initial opening,
or try to use some reference values for early 7(x) from some known
solution.To address those issues two approaches will be considered,

¢ The initial fracture has been opened for a long time, and the
initial opening is fully saturated,

(1,2) (x) _ —00 if 0 S l(t)x S l*,

12) (158)
T () 1 L < I(#)x < I(t);

¢ The initial fracture developed similarly to the zero leak-off self-

similar solution [65], where for small time it is reasonable that

fol gq;(x)dx — 0),

(1,2)(x) _ (xEx)>* —to; if0<I(H)x <1, (159)

i) (x) i1, < I(H)x < 1(b).

(12

Here Tnu’m)(x) refers to the (160) or (161) outputs of the numerical
exposure time calculation scheme described in Subsection 3.8.2 be-
low. The effects of q; of both of these approaches are presented in
Figure 42. The comparison of these two can not, however, be com-
pleted without understanding the effects on fracture solutions. The
T, strategy essentially means that q; = 0 for xL(x) < I,.

In Figure 43, it is shown how a fracture with sufficiently large leak
off can recede at the initial times instead of propagating as expected.
Furthermore, the next two approaches could be considered:

T((:)b)— only the recent fracture history is taken into account, and
reopened segments are treated as if no cake layer existed;
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Ta
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0 0.2 0.4 0.6 0.8 1
T

Figure 42: Comparison of effect on leak off volume, of approaches 7, and T,
on a fracture with % ~ 0.6

. T(%)- the fracture history is traced from the beginning, and re-

opened segments are taken into account, thus T((Lf;)(x) might
return multiple opening times.

This adds up to a total of four combinations of strategies for obtaining

T.
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t

(a) Initial fracture closes for both 1, and 1,. Zero leak off at initial open-
ing (158) only prevents the initial part of fracture from closure.

T(x)

0.5 0.6

(b) Depending on the choice of T((al’hz)), different fracture opening times

(2)

are taken into account. Only T,
was exposed, as marked by the solid red line. 7; ignores most of
the information. Dashed lines indicate ignored exposure time.

finds all times when a point x

Figure 43: Comparison of effects of the various interpretations of initial frac-
ture history and 7(x) calculation. This particular result was ob-
tained while testing initial conditions shown on Figure 15a. (neg-

1,2))

ligible difference for Ta(
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3.8.2  Exposure time computation

For both the variants of Carter leak-off (4), it is necessary to perform
additional computation of the exposure time f — 7(x), for each grid
point x;. This can be a challenge indidually, especially if it is to be per-
formed within the derivative function supplied to an arbitrary ODE
solver.
If only the recent fracture opening time is taken into account, then
e (x)=r1 (x) (160)
num 2N:+1 .
Alternatively, if a point on the fracture was previously opened and
closed several times, the exposure time t — 7(x) must account for
some historical opening periods,

T,giln(x) =—1(x)+0(x) —1x)+0ux) —

(161)
- = TN—1(X) + TN (%) + TN (%),

where odd terms refer to opening times, even terms to closure times,
and N is the number of times a single point on fracture was opened
(or reopened).

As the solution is integrated, the function (99) is called and val-
ues of L(t;), t;, and Vy(t;), as calculated at each call, are stored in
a dynamic array, sorted by t;. Values are filtered before insertion so
that each value of L; and t; is greater than the previous, with the
exception of closing fracture events (162). Then, when ¢ — 7(x) must
be found, the formed array is iterated over to form the trajectory of
the crack tip (black line on Figure 43 ). As this iteration is made,
for each grid point on the x-axis, the number of times the crack tip
passed through that point is accounted for, as shown by intersections
of vertical lines with the black line in Figure 43. A cubic polyno-
mial is interpolated to approximate these intersections, on two points
(L(t;), t;) and (L(tis1), tiz1), such that L(#;) < xL(#;) < L(ti+1), or
L(ti+1) < xL(t;) < L(t;) for closing segments, with derivative con-
ditions on Vy(t;) and Vj(t;11). These times are then combined to ob-
tain the total exposure time for each grid point (161). By taking into
account all N; times that 7(? is calculated, if only the most recent
opening time Tyy. ;1 is used, T(V) is obtained.

3.8.3 Shut down regime handing

This work has so far focused on the propagation regime, although
there are two other possible regimes: storage and shut down. The
storage regime refers to a situation when a large toughness K¢ value
prohibits any fracture growth [93]. This scenario is not accounted by
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input :vectors with L(¢;), t; and Vy(¢;), arranged by their
appearance time t;, N grid points xj
output: T, (x;) as a vector of size N

Tq (%) <— array length N of empty dynamic arrays;
k+—1;
fori < 1tolengthoft; —1 do
if L(ti-i-l) > L(fi) then
repeat
Tp41(xx) <— output of interpolating L(t), Vo(t) at
ti tive;
k«—k+1;
until x; > L(t;);
end
f L(t,‘+1) < L(ti) then
repeat
Tyt1(xx) ¢— output of interpolating L(t), Vo(t) at

o

ti, tiva;
k+—k—1;
until x; < L(t);
end
end
fori < 1to N do
Tnum(xk) T (xk)r'
for j < 2 to length of T,(xx) do
if j even then
‘ Tnum (xk) < Tuum (xk) + Tj(xk)/'
else
‘ Tnum(xk) — Tnum(xk) - Tj(xk);
end
end
Algorithm 2: Scheme for numerically approximating 7(x) in a
propagating or closing fracture
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the PKIN model, as it does not include formation toughness. On the
other hand, the shut down regime, which corresponds to a receding
fracture, is possible to obtain in the PKN model by altering the fluid
injection or allowing for high leak off values.

The underlying assumptions were that the crack propagation speed
is positive (V(1) > 0) and that the crack width is greater than zero
(w(t,x) > 0), except for the crack tip where w(t,1) = 0. These as-
sumptions could, however, become invalid under specific conditions.
A fracture remains open as long as the fluid flux inside the fracture
is greater than the leak off, so we propose a simple observation: if the
fracture width is monotonically decreasing from mouth to tip, and the value
of leak-off monotonically increases up to the crack tip, then the first possible
non-tip point x where w(t,x) = 0 can occur is 1 — € for an infinitely small
e. The first point on fracture to close, should be the last grid point,
closest to the tip.

Noting that MATLAB ODE15s solver provides an option to include
events, detection of zero value crossings for additional arbitrary pro-
vided functions, we supply a simple event function

fevent(t) = WN. (162)

Then when the value of the crack width at the last grid point
reaches wy = 0, ODE15s is going to put the integration on hold.
It would then be possible to resume after a small modification of the
solution at the time the event occurred,

lend = (1 - g)lend/ wend(x) = (wend(x(l - 8))/ (163)

where /,,; and w,,; refer to the values at the last time step. The dis-
cretized value w,,; needs to be extrapolated, which is done using
spline interpolation, and asymptotic terms wy and w; for sufficiently
good (Appendix A.3). The fluid balance is satisfied (see Subsection
3.8.4), which is accomplished by essentially discarding a closed frac-
ture segment of length ¢l. This is a discontinuous step, however the
change is relatively small and insignificant. If the fracture were to re-
cede significantly, this operation would need to be repeated multiple
times, leading potentially to high computational costs, as each back-
ward step is el. For this reason, it would be unwise to use ¢ < 102
to close possibly closing fractures in the shut down regime, but it
is possible to use smaller € in propagating regime, and switch to a
larger value if a change in regime is detected. Note that this approach
should not be treated as a proper closing regime solution, it is a sim-
plified extension to the propagating fracture model. An example of a
closing fracture is presented in Figure 44.
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Figure 44: Close up view on closing fracture length. Fracture is allowed to
close by ¢l, thus staircase pattern is formed. Smaller ¢ would re-
sult in even smother trajectory, but would dramatically increase
number of steps.

[26]

Figure 45: Testing Tb(l'z) with a periodic pumping function (alternating qg =
0 or 1). Cycles of propagation and shut down regimes appear
(as expected from other results, example [26], [93]). The choice
of T affects the second and third cycle, this result however refers
to fracture length L, not net inlet pressure, possibly making the
result original (as it is hard to find such an example in the litera-
ture). Note the relation between the old peaks and the change in
propagation speed, marked by dotted horizontal lines.
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3.8.4 Fluid balance check

The fluid balance equation is used to verify if solver output is valid,

t 1 t ol bl
/ go()dt = / w, (X)dx + / / w(t, x)dxdt + / / g1t x)dxdt.
0 0 0 Jo 0 Jo
. (164)
A good way to integrate the leak off function fot Jo @i(t, x)dxdt is to

add an extra ODE, which we will define as the operator

1
C :/0 qi(t, x)dx, (165)

so that the derivative function (99) can then be extended by attaching
¢,

vy ={AB,C}. (166)

This is a relatively small modification that does not significantly
affect the computations in any manner. It should be treated as an
advantageous optional addition. To keep things simple this operator
C will stay hidden for the remainder of this work, as its presence is
not essential. All the mentions of fluid balance checking in this work
are based on this additional operation.
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3.9 TEST ON REAL LIFE DATA

An opportunity was given to test the single fracture model against
some actual field data, when a post frac job report was made avail-
able by a friendly third party gas company. This contained summaries
of three fracturing operations performed in porous sandstone forma-
tions, where a calculation of fluid leak off was needed. Unfortunately,
an exact value of the Carter leak off constant C; was not provided.
Instead, a formula similar to the pressure proportional Carter type
variation (4), as used by Kresse in [42], was utilized,

2hCUC
= — 16
g t—1(x) (167)

2C,C, krprp kigrcr
Cvc = ’ Cv = A, Cc - e 168
Co + 1/C2 4 4C? \ 2wy Tty f P69

The constants used denote the following physical quantities:

* ¢, - reservoir porosity;

e Cr - total compressibility of reservoir;

¢ k, - permeability of rock matrix;

* u, - reservoir fluid viscosity in the porous media;
* uy - filtrate fluid viscosity.

The fracturing job was performed with ThermaFrac fracturing fluid
designed for operations at significant depths and high temperatures
[84]. It is significantly more viscous than other fracturing fluids to
allow for greater width of created fractures. The underground tem-
perature during this operation was well over 100°C. Under these con-
ditions, the viscosity of reservoir fluids (natural gas) and filtrate flu-
ids (sandstone filtrated ThermaFrac, which is assumed to be water)
were adjusted to account for the higher temperatures. To simplify cal-
culations, the quantity go was assumed to be constant over the entire
treatment time. The remaining parameters were provided by the third
party gas company as presented in Table 9. The results of running
these simulations are shown in Figures: 47, 48 and 49.

These results can not be treated as final and accurate. The model
does not take into account various physical processes. Proppant trans-
portation was ignored, to list one example, which is a subject of re-
search on its own [45]. Indeed, the formed fracture may not even be
of the PKN type. Furthermore, the collaboration with the gas com-
pany involved frequent changes to both values and interpretation of
physical parameters. These were measured in laboratories, and these
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well 1 well 2 well 3

v 0.25 0.295 0.26 -
50%10° | 5.87%10° | 5.69%10° | psi
0.3 Pa.s

qo | 0.010 0.025 0.014 m’

h 5.2 7.2 6.0 m
tond 56 46 53 min

¢r 0.0848 0.07241 —
Cr 6.492 x 104 Pa~!
k, 3.8606 * 10~ 111431077 | m?
Hr 2%107% Pa.s
Ur 1%107° Pa.s

Table 9: Physical parameters used in simulations of well 1, well 2 and well
3, based on a third party gas company reports

measurements could vary significantly even for the same parameter,
between sets of measurements.

Our purpose was to verify if the one fracture model behaves in
a predictable manner and gives reasonable results. These results are
within the same order of magnitude as those presented in confiden-
tial reports, the gas company had ordered from a professional source.
Furthermore, the reports also included pre- and post- fracturing gas
flow from the wells. Interestingly well 1 produced no gas after frac-
turing, while in well 2 and well 3 outputs were quadrupled. We could
conjecture a connection with the end time fracture length, as well 1
resulted in a much sorter fracture, but this falls well within the realm
of coincidence.

Nevertheless, although this example might not represent be best
practice, by comparing numerical predictions obtained by our model
to the data, it is reasonable to use it to forecast which fracturing sce-
narios are more likely to result in favorable outcomes. The sand stone
reservoir does appear to soak up most of the fracturing fluid, a reason-
able result given sandstone’s high porosity. The hypothetical fracture
lengths are not very long, but neither did the reports suggest consid-
erably better outcomes. Given that the alternative providers demand
a significant price for such simulations, the program developed here,
available online, shown on Figure 46, is a practical free alternative.
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Figure 46: Screenshot of MATLAB based program developed while testing

on real life data. Available for download at http://morswin.co.

nf/
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Figure 47: PKN fracture simulation for well 1
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Figure 48: PKN fracture simulation for well 2
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Figure 49: PKN fracture simulation for well 3
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MULTIFRACTURE MODEL THEORY

Having developed good and accurate methods for modeling of a sin-
gle fracture, as derived in Chapter 2, tested in Chapter 3, and pub-
lished in [44], the knowledge of the single fracture model will now
be applied to simulation of complex structures composed of multiple
fractures. The PKN model is used as a basis for this challenge, but re-
quires a few significant modifications, the first being the replacement
of the simple linear elasticity relation (6) with:

kw = Pnet = Pfluid — 0o — 0y, (169)

which was used by Bunger[10], and is identical to the original
Nordgren [70] formulation except for the term o;(x, t) which refers
to the influence of other neighboring fractures.

The Poiseulle equation (1), with the modified elasticity (169) will
be updated to:

OV f1i
q= —%w‘% pg;”ld = —Al/IwS‘a(p"Et Jg:” + al), (170)

where the term ¢, is assumed to be uniform along the propaga-
tion direction and thus disappears with differentiation. The term o;
on the other hand remains in the new continuity equation (2), and

contributes to the newly updated Reynolds equation:

ow 19 39(kw + o7) B
g Ma (w 7ax +q1 =0. (171)

Now note that this seemingly minor decision to include ¢; leads to
a huge modification to the single fracture formulation, and further to
much more additional work required to combine them into a func-
tional system of multiple fractures.

The description of this theoretical multifracturing model will be
divided into five sections.

* Section 4.1 explains a new mathematical formulation for mul-
tifracturing, and introduces a number of components, with a
general description on how to combine them.

* Section 4.2 presents an approach for joining fractures together
and outlines an algorithm for calculating the common junction
pressure.

127
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* Section 4.3 presents an algorithm for resolving fracture visibility,
and as a result calculating o7 efficiently.

¢ Section 4.4 theorizes simple approaches to resolving fracture
collisions.

¢ Section 4.5 explains how this whole multifracturing formulation
can be assembled into a computer model, and outlines some
performance bottlenecks.

[ November 10, 2015 at 15:26 — classicthesis version 1.1 ]



4.1 FORMULATION OF 2D MULTIFRACTURING PROBLEM

4.1 FORMULATION OF 2D MULTIFRACTURING PROBLEM

4.1.1  Graph like structure

' ™~

existing closed crack

A
. | PKN like crack
Solid concrete pipe / \ ILYJI

PKN like “pipe”

Well, q, is applied
here

Junction

Figure 50: A sample 2D multifracturing geometry visualized

Let us assume that the multifracturing model is a collection of some
smaller sub-models. It exists in a horizontal rock layer, that when

viewed form the top can be interpreted as a two dimensional plane.

Consequently, a number 2D points, vertices, can be specified. Each
two vertices can be connected by an edge, consequently making the
entire structure a graph. Edges and vertices are abstractions of various
physical structures.

An edge can be interpreted as:

* a PKN crack;
® a PKN pipe;
* a solid pipe;
* a closed crack.
A vertex can be thought as:

* junction connection points distributing fluid among connected
edges, can act as a pump at its location (wellbore);

* propagating cracks tip, i.e. a movable crack tip location;

® closed cracks tip, indicates a closed crack’s start or end location.
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With these abstractions it follows that:

e each vertex can be located by its unique (x,y) coordinates (not
to be confused with the normalized %);

* every vertex is connected to at least one edge;
* every edge must connect two vertices;
¢ anormal vector 71 to each edge can be obtained;

¢ the length L for an edge is the distance between the two con-
nected vertices;

* each edge has a different orientation, which results in a different
net backstress o, value;

¢ the abstractions if PKN crack and PKN pipe store additional infor-
mation about the distribution of fluid, and spatial discretization
(grid type and N), while solid pipe and closed crack have no such
data;

¢ the locations of each edge’s local 1D grid point i in a global 2D
coordinate system can then be consequently derived as

(xi/ ]/z) - (xl + Lfo/ ]/1 + Lny)/ (172)

where unit vector L = (L, L,) shows the propagation direction
and is perpendicular to the edge normal 7.

Representing the model as a graph structure is not necessary math-
ematically, but highly beneficial from the practical and computational
points of view (some other works also suggest this abstract structure
interpretation [16]). This representation allows us to couple 1D formu-
lations, into a 2D problem, while still effectively using 1D to describe
each fracture. In other words, the added dimension is dealt with at
a higher level, while the single fracture solution is reused locally for
each edge. Several issues, such as fracture interaction, rendering or
actual code quality, will be shown later to be elegantly addressed
with such structure representation. Note that if only one junction and
propagating crack tip are connected by a crack edge this formulation is
equivalent to the standard half wing PKN model fracture.

4.1.2  Backstress oy

The backstress experienced by each fracture should be based on that
fracture’s orientation relative to the horizontal stresses in the under-
ground formation. It is a common assumption in hydrofracturing
problems, as showed by [43, 75, 105], to simply split this experienced
stress into two parallel components, which will be denoted in this
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Figure 51: Edge normal 7 in relation to oy and oy.

work as 0, and 0y,. The third component ¢ , acting in the vertical
direction, is ignored as it has little influence on existing PKN like
fractures. This assumes a uniform stress experienced all over the un-
derground formation.

To find oy for each edge, we will use

0p = |ﬁ"7x|+|ﬁ‘0y|r (173)

where 7 is unit normal to that edge. As can be observed from (170),
this term would eventually vanish in computations if ¢y is constant
along the fracture length. However if 0y is different for interconnected
fractures, then this term must be taken into account if the fluid pres-
sure (169) is to be properly compared between these fractures.

4.1.3 PKN crack

The conventional PKN like fracture, as described in Section 2.2, is
used with a number of changes. Such a crack is attached to a junction
by its inlet and has a propagating tip, that moves away from its the inlet.
The computation for the PKN crack needs to be slightly updated. The
old governing equation for the PKN model (29) is replaced by

crack = 9 T ML2 |3 ox2
2

2 2
v dw k llngai} + 3w? (aif> + w3—a w]
(174)

MIL?
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which adds the stress influence induced by nearby fractures ;. Fur-
thermore, the boundary at the inlet (24) should be modified to
17 (x=0
w0(0,4) = ¢ [P — 0~ a(0,0)], (175)
where py,ig is the fluid pressure in the junction this crack propagates
away from. This formulation does not affect the computation of L,
and so operator B, (32) is unchanged. The change applied to operator

A still allows us to use a previously defined variable U with relative
ease,

crack = 3¢~ ML2 ox ox ox2

2 (1 [oUdg 9%0;
3 {MLz [83(835+u83c2] ‘ql}-

2 2
AY ou_ k xuoau+<au> +3uau

(176)

Formulation (65) is therefore still available. Although () formula-
tion (77) could also be used, it carries an inherited problem due to its
conversion from the width integral to the actual width of the fracture.
While this could be managed, it would considerably increase the time
needed to develop the whole model, thus it should be left for future
development.

4.1.4 PKN pipe

Within the boundaries of the PKN model, as described in Subsection
4.1.3, it is possible to consider some fixed length of the fracture as a
separate flow channel. This would result in a new system where we
seek to find a pipe width w(x, t), with initial condition

w(0,x) = wy(x), x€(0,1), (177)

and boundary conditions

1 y—

w(0,t) = 7 [pj((ulig) — 0y — 07 (O,t)} , (178)
1 r—

wlt) = [P —0—a(Lb)], (179)

where p](f;;(d)) and pj(f;}i) refer to fluid pressure at two connected jurnc-

tions. This condition at w(1,t) is much easier to deal with than the
previous condition of zero opening at the crack tip (24), and there is
then no need for special BC conditions or e-regularization.
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The governing equation is similar to the result obtained in the nor-
mal PKN crack (29), with one significant difference in that the propa-
gation related term is removed,

w 0wk , (ow\? 502w
pire = 3f T MIL? [3“’ <8x> twaa| o (180)

A now constant L is the length of this channel, and the distance be-
tween two connected junctions. This governing equation has much
smoother behavior than the previous version for a crack segment
(174), as the fracture tip and its singularity no longer exist. Just as
in the previous case, we can introduce the dependent variable U,

qu U _ &k

2
vive = 35 = 32 —3U53q;. (181)

U\ 2 22U

Finally, when the effects of neighboring fractures ¢; are included,
the governing equation becomes

ow k ow\ > 2w
w. = —="— 2 - 37
vive = 3f ~ ML2(1) l3w (ax> tw 8x2]

ML2(t) dx dx x|

(182)

4.1.5 Solid pipe and Closed Crack

It is reasonable to assume that there might be some fixed flow chan-
nels, such as man made horizontal concrete pipes. These solid pipe
segments are assumed to have circular cross-section. In the simplest
form, we can apply Poiseuille’s Law to find

AP fruiaTR*

Q=g

(183)

where variable Q is the flow rate, and we have constant length L and
radius R. The term Apgyq is the difference between the fluid pres-
sures at the two junctions this solid pipe connects. Thus, the flow rate
might take negative or positive values, depending on the direction of
the flow. This assumes laminar flow in these solid pipe connections,
but the PKN model itself is based on a non turbulent flow assump-
tion.

Closed cracks are preexisting fractures, that are assumed to be
closed by the confining pressure, but might be opened by the frac-
turing fluid. These have zero width, and exist as "markers" that may
change the path of propagation of existing fractures. Each closed
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crack connects two closed cracks tips, or for cracks reached but as yet
unopened by the fracturing fluid, a (propagating) crack tip and a closed
cracks tip.

We assume, as follows (169), that this fracture will remain closed
as long as

Pfiuid < 0o + 0. (184)

There are a number of other factors that should be taken into ac-
count, however ensuring that p,.; > 0 for a fracture to open is neces-
sary for the computations, and can be logically explained.
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q2

Figure 52: Junction condition visualized

4.2 JUNCTION STRATEGY
4.2.1  General concept

Each junction connects m edges: cracks, pipes, concrete pipes or closed
cracks. At least one edge should be connected, but there should be no
restriction made on the maximum number (or at least there is no need
to impose such limits). If we assume that the size of a junction itself
is small enough, compared to the dimensions of connected edges,
and these openings are relatively small compered to their lengths, it
is plausible to model junctions as point size connections. For such a
point one would expect a single value of fluid pressure pfiq, and
fluid balance of flow through that point to be zero. Therefore within
one junction it is assumed that:

Fluid pressure is exactly the same across all connected edges at the point

of connection
o _ @ _  _ (m
Pfiwia = Pfuia = =+ = Pfiuias (185)

Zero flux sum, all the flow in and out adds up to zero
Jg1+q2+..+qu =0. (186)

The above assumptions are similar to those used by Kresse [42],
but the ideas can be traced back to simple pipe network problems
[95]. However, the further application and derivation of the method
presented here was not found in the reviewed bibliography.

4.2.2  Newton method for junction fluid pressure

Let us now say that there is a junction with m cracks, crack pipes and
solid pipes connected to it. The flow components of these connected
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segments g; ( PKN pipes 4.2.4 or PKN cracks 4.2.3) should sum to
zero as required by flux sum (186). Thus,

m
Z%‘ + QO = 0/ (187)

where additional gg can be added to account for fluid pumping at
that junction, essentially turning it into a wellbore.

To find the pressure value 7, for a junction, one would need to find
the root of

F7 (T, Tother) = Zqi =+ qo, (188)

which may be determined by use of Newton’s method. Note that
the iterations for this Newton’s method must be performed together,
for all clusters of J connected by solid pipe segments, to pass the
value of Jy,r ( as required by solid pipe segments (195)) between
concurrent iterations:

Fj(jn/ u7other n)
Fo(T)
In other words, before concluding step n 42, The n + 1-th step of
all the other junctions must first be found. The derivative of F’,(J) is
simply

jn+1 = jn -

(189)

dqi
j k70fh€7’ E q

(190)
To implement this scheme we must establish a method for obtaining
the flow rates of each connected crack, crack pipe and solid pipe, the
function q(J, Jother), and its derivative ;—}. The expressions for these
are given in the later Subsections 4.2.3 and 4.2.4. Note that this strat-
egy for obtaining the junction pressure is not dependent on the type
of connected edges, instead each edge should contain a generic func-
tion to estimate those boundary flow rate values, which can then be
used later in an object orientated code design.

4.2.3  Flow components for cracks and crack pipes

In contradiction to the previously used Neumann type boundary con-
dition in the PKN model (24), where the fluid injection rate gqo was
related to the first derivative at the crack inlet, the junction formula-
tion results in a Dirichlet boundary condition. The volumetric flow
rate given by (1) can be rewritten in terms of just the fluid pressure
using (169) as
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1 59 1 2P f1uid
1= _MLw ox MLk3(pfluld — o) “ox (191)

If there are cracks or pipe cracks attached to a junction, we can derive

a numerical approximation of % — measured at each junction. If this

approximation is based on a polynom1al then we can find parameters
« and B to replace o L then find (0, t), and describe the junction
component flow g(7, \7other) by the nonlinear relationship

q(T, Tother) = T —0,— ) (T +B). (192)

MLk3 (

Consequently, we can write

dg A

dJ  MLK3

3(T =00 —)* (aT +B) + (T — 0 —1)’a] . (193)

The parameters « and p are dependent on w(x, t), 0y, 07(x,t), the
discretization of x and the type of polynomial used in the approxi-
mation, A = £1, depending on the direction of flow. Two versions of
these polynomial approximations are shown in Subsection 5.1.1.

4.2.4 Flow components for solid pipes

We could use the parameter 7 to replace the fixed length L and radius
R of a solid pipe,

_ 3nR*

- 2ML’

A solid pipe has to be connected to two distinct junctions, where the

difference in pressure between these is given by Ap = (J — Jother)
and the fluid pressure given at the other junction connected by a solid
pipe is given by J,er- Therefore, a solid pipe attached to a junction
would result in the following component of the flow sum (188)

(194)

Q(j/ ~7other) =T — YTother, (195)
and consequently we would have
dq _
a7 - (196)
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4.3 METHOD FOR ELASTICITY INTERACTIONS
4.3.1  Calculating o7 value

Within this section, we will describe a method for the approximation
of the neighboring fracture influence o;.

Previous work by Bunger [10] presented analytical methods for far
field influence which can be interpreted as

3 n?
01(1) =3P (197)

kLh [} wdx
o) = Kkl %, (199)

where H is the fracture spacing in an array of parallel PKN frac-

(1)

tures: the distance between two fractures. The approximations o,

and UI(Z) were derived from the full theoretical formulation for elastic

response in a uniform isotropic medium. The new method proposed
here should be constructed so that it obtains comparable results, yet
allows for calculation of ¢; for any placement of edges (fractures) in
the model. The assumption is that for every point x; on the target
fracture, the influence projected by point x; and its adjacent region
on the influencing neighboring edge is

() _ gkhwidx;L
T nin(d3,1) (- ) (- ), (199)

where we define the new quantities as:
* 7;- the normal unit vector to source edge;
* 71;- the normal unit vector to destination edge;

e (- the unit vector in the direction of calculated o;, the direction
from x; to x;j on a two dimensional plane;

* wj- the width of edge at x;;

* Ax; - half the distances to the next and previous points on
source edge grid;

. d]' - the distance between x; and x;;
¢ L - the length of influencing edge;
¢ I - the height of the influencing edge;

* ¢ - an elasticity constant, whose value is approximated in Sub-
section 5.2.1.
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Figure 53: Graphical reference for the calculation of pseudoelastic influence
between two edges.

Figure 53 provides a graphical depiction of the scenario considered.
The term min(d®, 1) is not present in (198), but is added here for rea-
sons explained in Subsection 5.2.2. Furthermore, the equation (199) is
very similar to the far field approximation, (198) as both compute the
integral, but (199) takes the orientation of the fractures into account.
The sum of (199) for each point, in the case of two close parallel frac-
tures will add up to (197), as shown in Subsection 5.2.1. Therefore,
the approximation presented is close to the one suggested by Bunger
[10]. We must, however, provides some details for computation with
this method.

Although we could fix Ax; on an already existing grid discretiza-
tion, doing so might result in a significant loss of accuracy if d; <<
Ax;j. Additional subdivision of source grid will therefore be needed
until the relative and absolute changes in Ul(] ) between each subse-
quent subdivision is less than some tolerance values ¢! and ¢7¢/*!,
which will be defined later.

For an edge with N points, let us define

Xj— Xj—1 3

Axj 174 = ) <j—-1/4<N, (200)
Xjt1 — X ) 3

Axji1/4 = Y 1<j+1/4<N- > (201)

Ax11174 =0, ,Dxn_1/4=0, (202)

Axy_1/4 = X2, Axn_1414=1—2xN_1. (203)
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This includes connected vertices® at x; = 0 and xy = 1, therefore
initially for crack pipes N := N, but for cracks N := N + 1. The sub-
division of this interval is done such that each point is assigned two
segments j —1/4 and j 4 1/4, which are of lengths of a quarter of the
distance to each other neighboring point. Most outer points are given
zero Ax value, as we choose that vertexes are point size and therefore
should project no ¢; value. The crack opening at these outer points
would either have zero width (if crack tip), and so have no projected
influence, or be tied to the pressure at the junction. As the value of
the pressure at the junction already depends on ¢;, this would create
a recursive dependence between junction fluid pressure and o; as per-
ceived by connected edges. To avoid this dependence, zero values are
set at points x141/4 and xy_1/4.

We would then continue to recursively divide the original Ax; in-
terval using this process,

o Gl | i (208)
_ O_I(jf3/8)+0_l(j71/8)+0,l(j+1/8)+0_l(]'+3/8),
o) U0 | i+ (205)
_ O_I(j—c—c/Z)_|_Ul(j—c+c/2)+0,l(j+c—c/2)+0,l(j+c+c/2),

Y2

where c= %, %, %, } is a fraction that depends on the depth of re-

cursion. This process is repeated until the tolerances 7! and ¢7*/*!

are met,

bstol (j£c) (jtc—c/2) (jtc+c/2)
o7 > o T — o — 0 |,
(j£c) (jtc—c/2) (jtc+c/2)
U_reltol > |Ul — 9 — 9 ’ ) (206)
! )
1

For each new point x; resulting from this interval division, extra
values for wji. must be extrapolated. This can be achieved by linear
extrapolation,

Wite = Aj1/4Xj+c + Wj—1/4, (207)

1 Junctions or crack tips. Again abstracting the whole structure to a graph simplifies
the calculation.
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Figure 54: Recursive subdivision of Ax;, where the vector ¢; is changed with
every division. The process is repeated until a desired accuracy
is obtained.

where the value of 4.1/4 is calculated initially and carried over to
each subsequent recursion,

Xi— Xi_q Xit1 — X;
aj_1/4 = %r Ajy1/4 = % (208)
The length of each subdivision of Ax;j is also defined recursively
by halving,

AXjtqc

2 7
while to find the distance d;.., we must find x;.., this is preferably
also done recursively within each step,

AXjic = (209)

Xjte/2 = Xjtc + DXjreo. (210)

Thus, dj.. can then be found from the distance between two points
(172), xj+. = %, and those points coordinates located in the 2D plane.
A graphical explanation of this subdivision is shown in Figure 54.
This technique could be replaced by an integral, as this recursive sub-
division does essentially perform numerical integration, where the
distance function d is rewritten in terms of one variable £. Unfortu-
nately, such as integral, although it does exist, does not considerably
reduce the number of operations that must be performed, nor does it
change the complexity of the 0; computation significantly. Moreover,
our chosen method does allow us to change the min(d®,1) term to
any other function without the need to again evaluate the integral,
and thus is more practical for initial prototyping.
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4.3.2  Resolving edge visibility

A further question arises in deciding or detecting which fractures are
visible to one other, and can therefore project stress influence ¢;. The
approximations of 0; were derived for a uniform continuous medium.
Fractures effectively split this medium, making it much harder to
reach a sensible interpretation. Here, we assume that the force of o;
is projected in straight lines from its source. If these straight lines
intersect with another fracture, the medium ends and the force is pro-
jected no further, but instead acts upon the flow inside that fracture.
In this simplified approach, there must be a straight line of sight, where
the calculation requires information on the visibility of edges to one
another.

This is a trivial problem if only we only consider parallel fractures
of equal length [10], but a further generic algorithm must be imple-
mented if we are to consider more complex geometries.. An existing
solution for the 2D visibility problem is adopted [72], which is a com-
bination of ray casting and wall tracking techniques, common in 2D
graphics applications. PKN crack and pipe edges are treated as im-
permeable walls for casted visibility rays, and these rays are treated
as projections of the U'I(] ) force. If a grid point on crack pipe or crack
can see a grid point on the other edge then a ray can be cast, and a
calculation of o follows. (see Figure 55). This Algorithm 3 needs to
be effectively performed on each grid point, on each edge, in order to
determinate its visibility to the other points.

Algorithm 3 results in a representation of the 360° sweep around
each grid point as an interval from 0 to 27 radians, with marked
visible slices of edges (check Figure 55). These slices are created by
intersections of cast rays and edges, and only those closest to the
projection source are kept. Slices have their start and end positions
specified relative to their parent edges, and so the specific range of
all grid points in that edge can be determined. As a result, partially
and wholly visible edges are both handled by the calculation.

The detailed code can be found in Section A.5.

Having dealt with finding the collection of all visible grid points
with respect to one source grid point, this procedure (199) should be
performed over all points to calculate the total neighboring fracture
influence on that grid point

all visible )
o= Y o (211)
k=1
. . . . 2 .
It is then possible to numerically approximate % and %, which

appeared in (174) and (182), preferably via a central finite difference
scheme (125). These approximations can then be used in the Reynolds
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equations (174), (176) and (182), or in the junction strategy described
in Section 4.2.

input

:a collection of edges, and a collection of vertexes

output: resolved grid point to grid point visibility

for each grid point in every edge do

do

end

pick one random vertex and cast a ray to that vertex;
cast rays to all the other vertexes;

sort other vertexes by the angle between that one vertex ray,
and the other vertices’ rays;

prepare an array to hold a slice of an edge, same size as
number of vertexes;

for each non transparent edge, but the one the grid point belongs to

find its end vertices positions in the sorted array, loop
around if necessary (the two vertices this edge connects);

divide the edge into edge slices using rays between this
edge end vertices, as determined by vertices index in the
sorted array;

for for each sliced edge piece do

if array is empty at slicing ray vertex index or this edge
slice is closer to grid point than the one already occupying
the array then

put edge slice in the structure at slicing ray vertex
index;

end

end

end

for each edge slice in the array do

mark all corresponding points as visible by the grid point
considered in the outer loop;

end

Algorithm 3: Simplified visibility determination algorithm (informal
pseudocode)
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Figure 55: Details of visibility resolving algorithm. First rays r; are projected
form source point to all vertexes v;. Then edges ¢; are sliced by
these rays and stored in a structure, sorted by 6. Closest slice on
each interval is marked as visible.
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(a) Propagating fracture ap- (b) Closed fracture is opened
proaches closed fracture

(c) Propagating fracture ap- (d) Openings are joined to-
proaches existing open- gether.
ing

Figure 56: Interpretations of some possible fracture collision scenarios.

4.4 FRACTURE COLLISIONS

Our proposed formulation has so far offered no restrictions on the ge-
ometries we might consider. Each edge, representing a fracture, could
be placed anywhere in the 2D plane, with no particular limit on how
it is positioned with respect to other objects. This should be changed
to more closely resemble the physical situations we wish to model.
One urgent restriction on fracture placement relates to edge intersec-
tions, such that, in general, there should be no fracture grid intersection.
If two edges intersect then that indicates the existence of a junction,
which should then be placed at that intersection, and the grid points
relocated. Otherwise, two separate flow channels would overlap, re-
sulting in an obviously unrealistic situation. While this occurrence
might still have some reason behind it, if one of the edges in question
is a concrete pipe object, then this intersection should be ignored, while
for intersections of other type of edges a possibility of fluid flowing
in and out of intersecting edges must be allowed for. We consider two
ways in which an intersection of edges might be introduced into the
model:

¢ The initial placement of edges contains intersections. Such an
initial condition for the model would be considered invalid, and
either an appropriate initial problem geometry provided, or the
existing initial condition fixed so junctions replace the intersec-
tion points;
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* A propagating fracture front runs into another edge when the
solution is computed. This occurrence would have consequences
in the creation of new fractures, propagating in new directions
and thus rapidly increasing the complexity of the model geom-
etry.

While the first of the two possibilities is a trivial problem, that should
be resolved before computation is started, the collisions of propagat-
ing fractures must be detected during computation, and their out-
comes decided.

To detect these collisions, any simple line intersection algorithm
can be used, where each edge is treated as a line segment between the
two vertices it connects. Given m edges, this would requirem?intersection
tests to be performed, which is not a significant number compared to
the complexity of the whole problem.

When collisions are detected, they can be of one of three types:

e crack to closed fracture, interaction with natural fracture;

e crack to other crack or pipe, interaction with another hydraulic
fracture;

e crack to other junction of crack tip.

The third type is a rare scenario since vertices considered here are of
point size, nevertheless we can have some collisions of this type by
assuming a relevant proximity threshold. A similar specification of
collision types, but for a different multifracturing model, was made
by Kresse [42].

Our strategy is to pause if collisions are detected, apply changes to
the model to transform intersecting edges into new and meaningful
structures and then continue computation. For all the changes made,
there are two practical criteria to be met if this model is to be consis-
tent.

Firstly, the total amount of fluid in the system before and after
collision must remain constant,

VOlbefore = VOlaftew (212)

which can be calculated by integrating over all openings of all affected
edges ) L fol w(x)dx. This will allow fluid balance (164) to remain
unaffected by the collision.

The second criteria follows from the junction condition (185). Our
strategy used to compute fluid pressure at junctions ensures the same
value across connected edges, but does not guarantee valid nor rela-
tively smooth transitions in this quantity. To maintain relatively smooth
and continuous py (reasonable differences over discretized grid), let
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us assume the value at the next closest grid points (x; > 0 or xy_1 <
1) is similar,

1 2 ‘
P}liid\xz or xy_1 ™= P}liid!xz or xy_q R . N pj(fjl)uid‘xz or XN_1* (213)

As collisions in this work are expected to force some fluid transfer
to achieve (212), balancing out the pressure at the same time, (213)
provides a reasonable way to manage this transfer.

4.4.1  Crack to Natural Fracture (closed crack)

Some studies and models of the interactions between propagating
fractures and natural closed fractures were presented by Chuprakov
in [17], and Kresse in [42]. Both studies show well the complexity of
the problem and the parameters involved, including toughness and
natural fracture permeability, that are not considered in our model.
Hence, developing an extensive model for these types of interactions
here would be a repetition of work already done, and a result easily
invalidated by the introduction of a new variable or physical phenom-
ena. A simplified model will be presented here, that is not meant to
describe the entire physical process, but rather to act as a reliable solu-
tion for the whole multifracturing model that produces a meaningful
result.

As is well shown in [17], there are a finite number of possible
outcomes when forced fractures collide with natural fractures. The
propagating fracture might open the natural closed fracture, continue
propagating, or both. Our presented approach will allow for all of
these theoretical outcomes, and add new fracture segments depend-
ing on the choice of action.

First, we define when an intersection of a fracture and closed frac-
ture triggers a change. A collision is said to occur if the intersection
of the line segment representations of the fracture and closed fracture exist
and the distance d between the point of intersection and crack tip satisfies
Tc < d < 2Tc. The parameter T¢ here represents a small collision
distance detection threshold. Under this definition, the collision is ac-
cepted after the propagating fracture crosses the natural fracture. If
this distance between the fractures is greater than 2T the computa-
tion has proceeded too far, and should revert to the previous time
step. Consequently, we can predict when a fracture will hit a closed
NF (natural fracture),

distance to intersection + %TC
Vo

time to collision ~ ’ (214)
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which provides another usage for the Vj term of the speed equation
(30). This criterion for prediction and detection will be used to ad-
just the time steps. Once the tip reaches the appropriate position,
the length of the propagating hydraulic fracture (HF) d that has pro-
gressed beyond the natural fracture (NF) would be cut of and re-
moved, counting as part of the prior volume in (212)

1

VOlbefore = Lcrack | d wcmckdx- (215)
- T

The reminder of the initial crack would then be translated into a
pipe segment. The new width of this new pipe would be

Lcruck —d
wPiPe(x) = Werack (xL

) x € (0,1). (216)
ptpe

Since the new pipe segment will be shorter by length d, this trans-
lation will require some extrapolation, as w is not available as contin-
uous, but discretized over several points. The process of finding inter-
mittent data points is described in Appendix A.3. The old crack seg-
ment is then removed from the model and three new segments origi-
nating from the new junction are considered (Figure 58), which have
lengths L1, Ly, L3 and are under the influences of stresses ¢y, 02, 03, re-
spectively. For a fracture to remain open, net fluid pressure must be
greater than experienced stress, and thus the condition (184) is used
to verify that for each considered fracture

Pret >0 = Priuia — ol _ 0’1(1) >0,i=1,23, (217)

where the value of the fluid pressure pf,i4* is determined from the
previous value in the old fracture at intersection. Since for each con-
sidered new fracture, agi), al(i) will have different values, it is pos-
sible that all the new fractures might remain, or that the fluid pres-
sure might not be enough to open any of these new segments, and
they would be discarded. It is possible that a fracture with negative
net pressure p,.; might shield another considered fracture, and that
therefore the condition must be re-checked in the event of fracture
removals. Once we have determined the number of allowed new seg-
ments, the width at x, is set,

L0 )
w(l) (xZ) = pfluld (]7;0 0-1 , l: 1’2,3, (218)

for each of the newly opened fractures. The initial width of these
segments might therefore be different, even while py,;; remains at
relatively the same level. The remaining data points w(x3...xy) can

Note again that the fluid pressure is different from the net pressure, as the latter is
affected by the fracture orientation.
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Figure 57: Obtaining w;,, by taking a part of existing w,,x, visualization
of conversion (218).

then be delivered from the self similar solution (271), as argued in
Subsection A.4.11, and scaled by a constant factor to obtain the same
value at xp. The remaining values of Lj, Ly, L3 can be found such that

Vol =L [ @ axi Ly [ 0?4
Oafter— 1 0 wnew crack X+ L2 0 wnew crack X

1 . (a19)
SN
+ L3 0 wnew crack X

has the same volume as the originally removed portion (215). This

can be achieved by assuming some simple proportion of volume

split among opened fractures, say proportional to their relative width
wl?)

T 0@ 00 and employment of a bisection method on the function

f(Liy) = L /1 w!) dx — w? Vol (220)
(i) (i) o  new crack w®) +w(2) _|_w(3) before-

The result of our procedure described here can then be further in-
tegrated in time by the model described in this work. The only guar-
anteed property is that it agrees with all the assumptions already
made, and does not significantly influence the stability or accuracy
of computation. In fact, this strategy is designed to best fit with the
rest of the model. Alternatively, it is possible to arbitrarily force the
removal, or addition, of other segments as long as non negative net
fluid pressure is maintained (217). This method could potentially be
replaced by other, more sophisticated solutions as in [17, 42], however
the outcome should still have to agree with (212) and (213). Regard-
less of the strategy used, the interaction with natural closed fractures
is considered to be an instantaneous event, and as long as all possible
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outcomes can theoretically be handled by this model, this method for
collisions can be used at least as a simplified test procedure.
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Figure 58: Detection criteria and possible outcome of collisions between
crack and natural fracture (NF).
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4.4.2  Crack to Hydraulic Fracture (crack or pipe crack)

point size |
junciton

1 TN-3
I
I

Figure 59: When two fractures collide, some fluid transfer is allowed in the
close proximity of the newly connected junction point. The vol-
ume added by @, should correspond to the volume removed by
W,, and W,,. This creates a nicely smooth starting point for further
simulations. Not to scale.

The second probable type of collisions is the intersection of a prop-
agating fracture with another fracture or PKN pipe segment. Unfor-
tunately, attempts to find any explanation of this phenomena in the
literature were unsuccessful and no good existing example was found.
Here, again, we use a simplified method that accomplishes this objec-
tive so that we can simulate the entire model. The detection of these
intersections will again be based on some collision acceptance thresh-
old Tc. If the distance from the fracture tip to the intersection with
the opened hydraulic fracture d is less than the threshold |d| < T¢,
the collision is detected , where an extended projection of the crack is
used. If the fracture collides but d > T, an overshoot occurs, and a
smaller time step should be used. The time to intersection can, again,
be predicted using the fluid velocity

distance to intersection
Vo ’

When an intersection is detected, a new junction is created in its
place. The old crack and its intersecting hit pipe or crack are removed

time to collision = (221)
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form the model and replaced with two new pipe segments and a new

crack segment it the collision was with a crack, or three new pipe

segments if the collision was with a pipe. The procedure is the same,

regardless of what type of object was collided into, as all are treated

as generic edges. The crack will be transformed into a new edge e;,

and the intersecting edge will be split in two new edges e; and es.
The prior volume is given by

1 1
VOlbefore = Lo r:mck/0 Wold cmckdx + Lyt edge/o Whit edgedx/ (222)

while the volume after is

1 1 1
Volvefore = Le1/0 We, dx + LEZ/O We,dx + Lea/o We,dX. (223)

The opening widths w, of new edges are given by

wel(x) = Wold crack (x) X € (01 1)/ (224)

We, (X) = Whit edge (51x) x € (0,1), (225)

Wey (X) = Whit edge (52 +51) x € (0,1), (226)

where the parameters s; = 1 LEL and s, = —4— LfL are proportional
e e ep T ey

to the new edge lengths’ share in the prior intersecting edge s; +
s = 1. This assignment of crack opening width will require some
extrapolation of values, as was needed in the NF case. We do this
with the techniques shown in Appendix A.3.

So far the volume has changed due to intersections, as e; is a result
of snapping an old crack to attach it at the new junction. Moreover,
the inherited value of pye ¢, (Xn—1) =~ 0 (due to being in the proximity
of the old crack tip) does not match with puet ¢, (XN—1) & Pret e5(X2) >
0. This creates a jump in the fluid pressure field that is likely to desta-
bilize either junction strategy, by disturbing the Newton iterations in
(189), or by significantly increasing problem stiffness. To rectify this
problem, while maintaining the fluid volume, a scheme is constructed
that attempts to transfer some of the volume to meet both conditions
(212) and (213). First, we define @ as “weights” for each of the grid
points,

o) — xt, (227)

@' = soxt, (228)
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@ =51(1—x;)". (229)

1

These ware chosen such that most of the fluid volume is transferred
near the junction, as idealized in Figure 59. We now seek the 2 and b
in

W, (x) = (1+ bwfel))wel, (230)
W, (x) = (1+ awfeﬁ)w@z, (231)
W,y (x) = (1+ a0 ), (232)

such that (212) and (213) are satisfied by finding the roots of

1 1 1
fi(a,b) = Volyefore — Lel/o We,dX — LEZ/O We,dx — Lg3/0 We,dx,
(233)

(e2) (e3)
P timia(XN=1) + P g (x2)
f(@,b) = plii (o) = s (239)

A chained bisection method, one bisection algorithm inscribed into
another, can be used to first find the value of b that matches a for
volume f;, and then check for solutions of f;.

The following scheme handles a relatively small volume transfer
compared to the volume of involved edges. With p > 1 used for
weights (227), (228) and (229) , the majority of volume is displaced
locally, near the junction. It can be physically interpreted as a pressure
jump in the system resolving relatively quickly, compared to the other
processes. However, this modification does not entirely resolve the
pressure drop problem, which must later be resolved by the ODE
solver.
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Figure 60: Detection criteria and outcome of crack to HF collision.
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4.5 LARGE COUPLED DYNAMIC SYSTEM FOR MULTIFRACTURING

4.5.1 Main algorithm

4.5.1.1  Model object concept

So far, we have derived a basis for a multifracturing model that covers
multiple types of connected edges and their interactions. Now it must
be combined into a single working model. The approach presented
here is an evolution of the previous single fracture model described
in Section 3.2. We will again consider an initial value problem, where
the value of y(t) = M(t) is sought, as the problem changes over
some time from initial state yo = M. Here, M will denote the whole
model, which is more than just the vector of quantities considered in
the single fracture case. Instead, M should be treated as a higher
level abstract object that includes:

e an expression for the change in time y'(t) = M'(t, M),

¢ a collection of edges (cracks or pipes) connected by vertices into
a graph fracture structure;

¢ a 1D discretization of each edge, with a mesh x €< 0,1 >, and
a set of edge specific properties (k, L, €, , q;,...);

¢ a 2D discretization of the entire model, and other properties
such as volume and placement of fluid pumping qp.

In the case of the one dimensional single fracture problem, the solu-
tion was effectively a two dimensional array, the values for w and L
at each considered x; and time step. However, since in the multifrac-
turing scenario the number of fractures and the structure they create
changes over time, the solution should be expressed as a collection
of M states at different times, which encapsulates both numerical
values and the changes in the fracture structure

multifracture solution = { My, My, ... , My, ,}. (235)

This is a step away from the simple numerical value array solution.
It also means that the algorithm must be able to produce a more
complex output, whose size must be adjusted dynamically as it is
impossible to predict the number of fractures. The total number of
discretization points will change, so the underlying graph structure
will also change. For the algorithm to store all these properties, it
must hold a separate M state for each time step. In addition, some
intermediate M states should be stored, so as to accurately represent
widths and lengths of fractures in between these events. See Figure
61 for some further clarification.
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(a) Initial state My, 10 cracks (b) Some intermittent M;, two
and 5 pipes, and one injection newly opened fractures are
point. added.

- HH

>

(c) Further M; state, extra openings
were activated. When should M;, ,
be reached ?

Figure 61: A solution to the multifracturing problem should consist of
model states M at various times, to accurately represent the all
of the process dynamics (red color indicates high pressure origi-
nating from the pumping point).

4.5.1.2 Indexing elements

As we will need to change the size of M, all measurements of its size
should be adjusted dynamically, rather than predefined at the start.
This calls for a well defined method of counting and indexing its
components. The size can be measured by three different quantities:

* Ny - the number of vertices, including junctions and crack tips;
* Ng - the number of edges, fractures and solid pipes;

* Nopk - the total number of ODEs, and the total number of grid
points.

We recall that PKN crack formulation used its own size N to de-
fine the number of grid points on the normalized one dimensional
grid (see Appendix A.1). Unfortunately, the introduction of the oper-
ator B (32) added one extra ODE that was not associated with any
grid point and, furthermore, the connection points for PKN pipes
and PKN cracks to be used here rely on the grid points x; = 0 or
xn = 1, but do not produce any ODEs associated with those points.
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We therefore have a situation where the number of introduced grid
points is very close, but not identical, to the number of ODEs, Nopg.
To simplify the process, we can add a few extra grid points or extra
ODEs to ensure that the two numbers match:

e The PKN crack grid can be set to account for N points x,, =
{0,..,1 —¢,1}, a simple modification that includes xy = 1 as
the last grid point. The value at x; = 0 is obtained from the
connected junction. Hence operator A, ((174) or (176)) can
be used for xo,..., xy_1, while B (32) produces the last ODE,
and the first ODE is either a dummy or added extra operator C
(165), for leak off integration;

¢ The PKN pipe grid already accounts for exactly N points x,, =
{0,...,1}, and Ay;p. ((181) or (182)) is associated with xa, ..., XN 1.
The values for x; = 0 and xy = 1 come from the two con-
nected junction segments, meaning there are two more points
than ODEs. The operator C (165) or a dummy zero ODE can be
added to match the number of grid points with the number of
produced ODEs;

¢ The other types of edges: closed cracks or concrete pipes con-
tribute no grid points nor ODEs, so do not need to be indexed.

It is therefore fairly easy to makes sure that

NE
Nope = )_Nj, (236)
j=1
where N; is the number of grid points and ODEs associated with
each edge. The total number of ODEs is the same as the sum of all edge
grid points.

Up to this point, the indexing of grid points x; was done locally,
with a local index i ranging from 1 to grid N. However, with the
introduction of the junction condition and elasticity interactions (Sec-
tions 4.2 and 4.3) we must introduce a higher level global indexing,

, j—1 ,
igIObal(il((]JZul) = Z N] + il%Zal' (237)
j=1

Here i l((])z o refers to indexing in the reference frame of an edge j, while
igiopar Tefers to the index in the whole model M. For an example,
consider a system with 2 fractures each of N = 10. The first grid point
i1ocat = 1 in the second fracture would correspond to igoapsr = 11 . The
maximum igupe = 20 would refer to the last grid point ijo. = 10
in the second fracture. Note that this dynamic indexing allows for
unique grid size for each edge.
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The main point of this indexing scheme is to be able to present M
as a single vector, and be able to identify which element corresponds
to which edge, and what value it carries. This is necessary for the next
step of constructing an ODE system. Furthermore, global indexing
allows for building and interpreting the additional utility matrices
described in Subsection 4.5.2.

4.5.1.3 Model as an ODE system

Having outlined a method for indexing grid points and their associ-
ated ODEs (237), let us define y and y/(t,y), for a given M. As

Yo = Mo = {ff,f;,...,fNE*}, (238)

y'(t,y) = M/(t/M) = {fl(t/M)/‘FZ(th)/'"fNE(th)}/ (239)

where ]:;‘is the initial value, and F; is a generic ODE operator for
each edge in the model. F; should be constructed from operators
A, B, C, as given by (32), (65), (174), (182), (176), (165). For example,

Ferack = {C, A1, s AN*l/ B}/ (240)

]:pipe = {C, ./41,..., .AN_l,O}. (241)

The 0 in the second equation, denotes a dummy zero ODE, and the
usage of C is optional. The initial values of F* should be similarly
combined, meaning when the initial value for model M, is needed,
all the vector values of discretization edges are combined together in
a single vector. Similarly, when the derivative M’ (t, M) is needed,
the vector values of derivatives for each crack pipe or crack are put
together into one vector.

4.5.1.4 Multifracturing algorithm

This formulation leaves the task of integrating equations to some un-
specified ODE solver. As in the single fracture case, the used solver is
unaware of the whole formulation and is merely a tool to perform nu-
merical integration from initial time f( to the final time ¢,,;. The solver
will be encapsulated as an abstract object to advance the model M
by some time step At. It will be provided with a function constructed
to appear as a simple generic y'(t,y), though the inside of that func-
tion will perform a whole set of operations to calculate the whole
M (t, M) (check Algorithm 4). On top of that there will be another
quasi-integration algorithm, that runs the provided abstracted solver,
tracks fluid balance and checks for fracture collisions (check Algo-
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rithm 4 and 5). The state of M at each time step made by this upper
algorithm will be recorded. Any required re-meshing will be done
separately from the encapsulated ODE solver, since such operations
are not a part of casual integrating methods.

There are two significant advantages of this approach:

¢ The integration, discretization, and fracture collisions are well
divided between different sets of code;

¢ The utilized integration code/ODE solver can be changed at will,
and switched to any other preferred method (a search for best
solvers is presented in Subsection 5.3.2).

The results of the computations are stored as a collection of M(t)
states at different times t € (o, f4). These might be different in size,
due to collisions or other events. Processing the solution is a chal-
lenge by itself, and will not be shown in this work, except for some
interesting results.

input :model instance M, at time ¢
output: M’(t, M)
fori < 1to Npopg do

‘ calculate (Tl(l) ;
end
for k < 1 to Ny do

‘ approximate initial junction fluid pressure .J;
end

while ‘Zi\l‘/ (j,fﬂ - j,f)‘ > some tolerance do

fork < 1toV do
‘ j,f 1 < newton method for junctions with Jf ;
end
end
fori <+ 1to Ng do
j +—index of first ODEs in E; ;
M, N < Filt Mg, jiN)
end

Algorithm 4: Algorithm for computing M’ (t, M)
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input :initial time f(, end time ¢4, initial model state M,
, inner solver instance
output: colection of model states My, ..., M;

end
Voly <— initial fracture volume;

Miss +— new model collection;

add My to Mj;s;

Ml‘ — Mo ;

t <— to;

At +— default time step;

while t < t,,4 do

M j — Mi;

M, <— deep copy of M;;

update M; visibility and jacobian pattern matrices;
use solver to advance M; by At;

Vol <— total volume of M;;

Qo +— sum of f :+At qo dt for all vertecis ;

Q; +— sum of ftt+At fol q; dx dt for all edges ;

store relative fluid balance for M; as %

if M has overshoots then
./\/li +— M jr
At +— time to soonest overshot in M;;
else if M; has valid collisions then
add M; to Ms;
M, <— deep copy of M;;
resolve collisions for M;;
else
At +— 2At;
t.o1 ¢— soonest forecasted time to collision for M;;
if t.; < At then
| At teg;
end
add M; to Mjg;

end
Algorithm 5: Algorithm for processing multifracturing problem.
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Figure 62: Example multifracturing scenario. Two arrays of PKN fractures,
connected by some PKN pipes, and concrete pipes. Edge visibility
shown for some grid points (but not all).

4.5.2  Jacobian and “utility” matrices

Let us recall the benefits that were received by properly utilizing the
Jacobian matrix pattern Jyster, shown in Subsection 3.6.4. It is worth-
while to try and use similar techniques in the multifracturing formula-
tion. A similar reduction in calculation time might be achieved, as the
presented multifracturing problem will also produce a sparse Jpatter-
The sparseness pattern will, however, now be much more complex
to derive. To deal with this problem, let us divide Jprer into three
matrices, each introduced by a different part of this problem, and all
Nope by Nopg in size. When added, these three matrices form the
full Jpattern of this problem. Instead of presenting exact formulas for
obtaining these matrices, the generalized methods of obtaining sam-
ple results for an arrangement of fractures, as shown in Figure 62, are
presented here. The exact code used for calculating these is shown in
Appendix A.5.

It is worth considering that Jpaer could be generalized to a much
smaller matrix that shows edge to edge dependence. The number of
Nopg will be of at least one order more than used Ng edges, and
such a matrix would allow a significant saving in time, by allowing
possible shortcuts in further computations.
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Figure 63: The discretization matrix for the example shown in Figure 62,
formed by FD approximation ((125) or as shown in sample code
Appendix A.4.6) and normalization over L. Close to tridiagonal
in structure.

4.5.2.1 Discretization Matrix

The first source of Jyuer is the tridiagonal-like discretization. It is
formed from operator A and B3, in a similar manner to that described
in Subsection 3.6.4 for a single fracture. With multiple fractures, each
fracture will add to this almost tridiagonal structure. Here an exam-
ple of such a matrix is shown in Figure 63. All N edges in the prob-
lem form a piece of this diagonal pattern, and the indices of the associ-
ated grid points are given by (237). Each repeated \ | shape represents
a PKN crack, while a single \ stands for a PKN pipe element.
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(a) Full point to point joint matrix. (b) Generalized edge to edge

version.

Figure 64: Junction matrix for example shown on Figure 62, indicating
which points are dependent on each by junction condition
(Section 4.2).

4.5.2.2  Junction Matrix

The boundary condition at x = 0, calculated by the junction strategy
(Section 4.2), adds dependence of each boundary point (x; and xy;,_1)
involved in the fluid pressure approximation on all the other points
contributed by connected edges. In the cases of PKN cracks and pipes,
these points are locally x, and x3 or xy,—» and xy,_3. Furthermore, all
interconnected concrete pipe segments share pressure, thus all other
attached edges are connected by this pressure dependence. If an edge
shares a junction with a concrete pipe, then the edges connected to
the other end of that concrete pipe are also affected. To find these
interactions, we must traverse the graph. to mark all the clusters of
junctions traversable by concrete pipe connections. The outcome of
this operation is converted into a very sparse matrix, marking all of
these connections, as shown in Figure 64a.
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(a) Full elasticity matrix, shows point to point visibility. (b) Edge to edge visibility ma-
trix, generalization of the
above with much less entries
to work with.

Figure 65: Pseudo elasticity visibility matrices, for example shown in Figure
62.

4.5.2.3 Pseudo elasticity Visibility Matrix

We can now present the matrix formed by resolving edge visibility
(Subsection 4.3.2). It is a symmetric matrix, that has non-zero entries
where two points are visible to each other, where 07 is projected. The
structure itself is unfortunately very dependent on the locations of
edges in relation to each other. Furthermore, while in the case of a
single fracture, or some other specific placement, this matrix will be
empty, for some geometries this matrix might be full, or very close to
being a full dense matrix. In fact, comparing this to the Discretization
4.5.2.1 and Junction 4.5.2.2 matrices, it can be clearly observed that
the introduction of ¢; increases the overall effort required to solve a
multifracturing problem.
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4.5.2.4 Utilization of sparseness pattern

A common feature of many ODE solver is that the custom Jacobian
function can be optionally included as an input, instead of a de-
fault naive dense approximation function. The dense approximation
would have a very high computational cost, especially in this multi-
fracturing scenario. To naively compute the Jacobian, we must com-
pute (239) for a small change of each solution vector element (238).
This in itself is Nopr number of operations, but when ¢; is present
the function (239), if not handled properly, will check for visibility of
all the other grid points (211), effectively introducing another (239) an-
other O (N3 ;) operations. Thus, ignoring the overall structure will
force O (N3 ) time complexity.

Although this indicates that the computation of the Jacobian would
take a comparable amount of time to that consumed by the matrix in-
version internal to the solver, the real cost might be much higher as
(239) in fact requires many more operations than a simple matrix re-
duction (as proven in Subsection 5.3.3). The alternative of using the
simplified edge to edge versions visibility (Figure 65b) and Junction
(Figure 64b) matrices can make the function (239) far less computa-
tionally expensive. Knowing which edges depend on each other re-
duces the number of calculations needed in (211) from Nppgto possi-
bly even 0, if no edges are visible, as knowing the whereabouts of non
zero entries of visibility allows us to skip unnecessary calculations.
Similarly, knowing which edges are connected to one other through
junction connections allows us to skip unnecessary operations when
computing the Jacobian.

For the best case scenario, such as a single fracture, the cost of (239)
and the Jacobian calculation is O (Nopg), if the information about
sparseness is used. Excluding fracture length L effect, all points de-
pend on two neighbors, thus we have an additional O (Nppg) cost of
constructing the Jacobian. In the worst case scenario, all grid points
are visible to each other and computing (239) will require O (N3 ),
so the Jacobian would have cost O (N3 ). It is impossible to make
an accurate prediction of what the average time complexity would be,
but it is clear that for many geometries that result in much sparser
Jpatter, the improvement gained by taking problem sparseness into ac-
count can be of a time order or greater (again computationally proven
in Subsection 5.3.3 ).

To conclude, it is very beneficial to exploit the sparseness effects
appearing in the multifracturing system. The computational ideas de-
scribed here are best shown by the actual code in Appendix A.5.
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(a) The naively computer Jacobian, always O (N(%DE)' can
be used to verify results.

’d §

w
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(b) Sum of Discretization, Junction and Visibility matrices,
may lead to O (Nppg), in the best case of no visibility.

Figure 66: Full Jpatter of an example multifracturing scenario shown in Fig-
ure 62.
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MULTIFRACTURE NUMERICAL TESTING AND
IMPLEMENTATION

This Chapter covers specific numerical and computational details,
and presents a series of various test scenarios developed for the mul-
tifracturing case. As many tests were already performed in Chapter 3
for the single fracture, the focus here is on confirming that the multi-
fracturing capable implementation performs identically to the single
fracture code, and on showing its capabilities when dealing with mul-
tiple fractures.

* Section 5.1 confirms that both the single fracture and the mul-
tifracture code produce identical results under the right condi-
tions.

* Section 5.2 tests the elasticity computation scheme with various
possible fracture structures, and proves that it produces reason-
able results when compered to other counterparts.

* Section 5.3 focuses on practical implementation aspects, includ-
ing object orientated design, parallelization, and a comparison
of multiple ODE solvers comparison.

¢ Section 5.4 shows some tests scenarios, to proof effectiveness
and functionality of the formulation.

The Appendix A.5 points to the location of developed source code.

169
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5.1 TESTING MULTIFRACTURE VS SINGLE FRACTURE.

We will now describe the implementation and basic testing of the
junction strategy proposed in Section 4.2. If a multifracturing formu-
lation consists of a straight chain of pipe segments, ended by a crack
piece, this is in fact equivalent to having a single fracture. The process
of dividing a single pipe using the junction boundary condition can
thus be measured against known results.

5.1.1 Numerical procedure for junction boundary condition

To begin, we will outline the numerical procedure for obtaining a
polynomial approximation of the pressure value at a junction. These
approximations are used in (189) to obtain the flow value g, and its
derivative ;—f;, as outlined in Subsection 4.2.3. Two types of approxi-
mation are considered: linear and quadratic, where these approxima-
tions are valid for both PKN-like cracks and pipe edges. The Left
version refers to application at the x = 0 boundary, which is the only
case possible for all crack segments. Pipe segments have two junc-
tions attached, hence the Right version will refer to the boundary at
x=1

5.1.1.1 Linear

The simpler version, that is derived from linear function based on
two points is

Right x =1 Left x =0,

1) 1)

xl = XN-1 x = X2,

P%id = Prruia(XN-1) p}lli,id = Pruid(X2),
A=-1  A=1,

1
o = O (242)
1
_ Pfuia
b= o (243)

5.1.1.2 Quadratic

The second, and more complicated, approach is to use a quadratic
polynomial that interpolates three edge points,
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Right x =1 Left x =0,
xW = XN-1, W = X2,
x® = XN-2, x® = X3,

Pgijd = Pfluz‘d(xN—l ),

pj(fi)u‘d = pfluid(xN72)/

P}Bid = Priuia(¥2),
Pﬁiid = Prruid(x3),

A=-1, A=1,
T = x(z) (x(z) — x(l)) A
1 x(z) — x(l)
& = ) S T (244)
2) (1)
_ o, (1 (2) X
B = Puia ( MO F) F Pfria T {245)

5.1.2 Testing simple split of PKN fracture

A simple way to test whether the splitting mechanism proposed in
Section 4.2 produces adequate results is to split a single fracture into
one pipe and crack segment, as shown in Figure 67a. Previously, a
single fracture would be compared with some analytical benchmark
A.2, now the new pipe and crack segments will be compared against
the kinds of fracture that they represent. Initially, let us assume some
split ratio, between o and 1, named Lgy;;, that divides the original
crack length [, into a crack and a pipe length, L.k and Ly, such
that

Leyack = (1 - Lsplit)l*/ (246)
Lpz'pe = Lsplitl*r (247)
i = Leraer + Lpz'pe- (248)

Naturally, as the fracture propagates, this will be valid only at the
initial time.

In the first test, we set Ly = 0.9, so that the resulting crack pipe
will have the constant length of 0.9/, and the initial length of prop-
agating crack segment will be of 0.11.. Both the crack pipe and pipe
should be given grids of N = 100 points, where the crack should
have a grid that gets denser at the crack tip x(), while the crack pipe
should have a uniform grid x(!). The outcomes of this test are shown
in Figures 67 and 68.
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We can observe that the linear fracture split condition works, as the
result is within 1072 order of accuracy, but the obtained result is less
accurate when compared to the original single fracture computation.
The quadratic polynomial approach is however very close to produc-
ing an error identical to that of the undivided solution. In fact, the
difference éw when using the quadratic split is so small that it is pos-
sible that it does not affect the solution. We conclude that the junction
BC strategy 4.2, with the quadratic flow component approximation,
allows us to split the fracture into two segments without noticeably
affecting computational accuracy.

pipe crack

P ——

=10 = L.eph',‘

(a) A single fracture can be split into a pipe and a crack segment,
without altering the solution.

0
100

t 00 x

(b) Single fracture opening.

0
100

t 00 T t 0o T
(c) Left pipe segment. (d) Right crack segment.

Figure 67: An explanation of single fracture splitting, the left pipe and the
right crack segment make up the whole fracture.
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(a) Pipe segment relative opening error dw under
linear split.
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(b) Crack segment relative opening error dw un-
der linear split.
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(c) Pipe segment relative opening error dw, un{d) Crack segment relative opening error éw, un-
der quadratic split. der quadratic split.

Figure 68: Comparison of crack opening relative error éw on connected pipe

and crack segments, using linear (242), (243) and quadratic (244),
(245) split methods.
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5.1.3 Finding acceptable split proportions

We now test to determine what values of Lgy;; are acceptable, con-
sidering all values of Ly € (0,1). Figure 69 shows the maximum
relative errors obtained when computing connected pipe and crack
segments. For the majority of L, values up to 0.8, the difference
in accuracy is negligible. This indicates that long crack segments at-
tached to shorter pipe segments do not present any significant com-
putational challenge. For Ly > 0.8, when the initial crack segments
are much shorter than the connected pipe, significant discrepancies
in the relative accuracy can be observed, that appear as a singularity
at x = 1. This discrepancy can be shown in more detail in Figure 7o,
where much smaller values of Ly;;; are also considered. Here, it can
be observed that although the initially introduced error is quite high,
it does eventually vanish at larger times. Even for Lgy;; = 10~%, which
indicates an initial pipe segment 10 orders of magnitude longer than
the crack segment, the computation eventual produces an accurate
result. However, for real fracturing applications, such differences in
lengths might be a huge exaggeration, such that Lg,;; = 1072 is prob-
ably already beyond credible disproportion’, but takes a relatively
short time to converge to acceptable accuracy. As shown previously
in Section 4.4 and Appendix A.4.11, the initial condition (8) might
have I, a few orders lower than the attached fractures, which in rela-
tion to the test made here is a plausible combination.

1 Lopiit = 10~° would indicate a one centimeter crack connected to a 10 kilometer long
pipe.
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Figure 69: Testing how different values of Lgy); affect maximum relative

error, in terms of fracture length, and pipe and crack

segments

widths. Values of Lg;; close to 1 generate large maximum errors,

however these values might be deceptive.
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Figure 70: Testing how the different values of L,,;; affects accuracy of rel-
ative fracture length error JL, with respect to time. Even with
Lsprip = 1 — 107, the solver eventually returns to normal accu-
racy at larger times, as shown by the relative error in fracture
length. Ly values close to zero were however not possible to

compute in a feasible run time.
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5.1.4 Testing a multiply divided PKN fracture.

crack

pipe pipe pipe E pipe

Figure 71: A single crack can be modeled as a chain of connected pipe seg-
ments with short crack segment at the tip.

So far, we have tested to investigate our numerical procedures used
in joining pipe and crack segments, and how these affect the two con-
nected segments. These tests can, however, be extended to an arbi-
trary number of pipe segments connected to each other, in one chain
ending with a tip crack segment (see Figure 71). Interestingly, this
multifracturing formulation then begins to resemble the FV formu-
lation used by Kovalyshen [40] and others, whose problem formu-
lations do not include the speed equation (12). Each pipe segment
controls its in and out flow by the junction boundary condition 4.2,
as a FV formulation of this problem would in fact do, while the crack
segment at the tip acts as a special element. Naturally, this similarity
is just an outcome of different assumptions and techniques in this
particular test scenario.

Figure 72 presents the outcomes of combining various numbers of
pipe segments, for different numbers of grid points used, for each
of these segments. The introduction of additional pipe segments im-
proves the accuracy. This agrees with our previous result, that the
quadratic split (244) (245) does not affect the accuracy. The improve-
ment should be attributed to the higher number of overall grid points
used. The first result, forN; = 100 is nearly identical to that of N, +
N, = 100, yet worse than N, + N. = 200, but the addition of more
grid points makes no more difference. There is a consistent saturation
at around N =~ 200, as observed in Figure 28.

We conclude from these observations that the number of pipe seg-
ments can be increased freely without any negative impact, at least if
dividing one fracture.
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Figure 72: Relative crack length errordL for various numbers of segment
splits with different number of points N, for the pipe and N, for
the crack. Up to 100 pipe segments are used for each. Extra seg-
ments initially increase the accuracy, but a saturation is reached
at N ~ 200.
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Figure 73: Two close parallel fractures, with all point to point interactions
drawn.

5.2 ELASTIC INFLUENCE TESTING AND IMPLEMENTATION
5.2.1 Two nearby parallel fractures

As a first test of the pseudo elastic influence procedure (Section 4.3),
let us consider a relatively simple case where two fractures are placed
parallel to each other, and aligned as if they were mirror images of
each other. This is similar to the case described by Bunger [10], except
for the fact that only two fractures are present, and hence the ¢; value
would be half of the expected value given by relation (197). Given that
both the fracture height and spacing are set to 1, we would expect this
elastic scheme to produce a result given by

(%) = 12 prer(¥). (249)

From the above, we may work out the value of the constant g seen

in (199), where this was the only unknown parameter. The approxi-
mate value proposed here is

g = 0.1413. (250)

This value of g allows the pseudo elastic influence employed here
to match the what we would expect from Bunger scheme [10] at the
crack inlet x = 0. The comparison of the two schemes is shown in Fig-
ure (74). Bunger’s method [10] was, however, derived for very long
fractures, where the effect of the tip region with its reducing width
and ensuing region with no open fracture was not considered. The
whole fracture aperture was then essentially treated as a flat surface.
Therefore, to find matching value of g in our model, we approximate
the case where fracture half length L = 100. This produces a nearly
perfect match, as L is indeed much larger than the spacing (hence
we have accuracy greater than the internal relative tolerance set to
1073, see Subsection below 5.2.3). In cases where shorter fractures are
considered, namely L = 10 and L = 1, a greater discrepancy can be
observed, especially for x > 0.9, where a switch form underestima-
tion to overestimation of 0; takes place. When the fracture length is
less than the spacing distance, as for example when L = %, the shape
of 07 changes to a constant line, which represents a switch to the far
field approximation (198).
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(a) Values of o; for different half fracture lengths.
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(b) Relative discrepancies do; from the close approximation 249, for different half
fracture lengths L.

Figure 74: Elasticity effect of two close parallel fractures. Values of o; de-
pending on the half fracture length.
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5.2.2  Two fractures from common junction

Here we will test the calculation of 0; for two connected fractures.
Suppose that there are two fractures originating from the same point
(wellbore), that for this particular test scenario are placed at some
angle « to each other, as shown in Figure (75), which setting gives a
good setting to test the effect of the distance term m in (199). If

we were to strictly use d%, then we would have to deal with a singu-

larity when ¢ — 0, which would be disastrous. Furthermore, we note
that the single fracture formulation (6) has already effectively normal-
ized the fracture height to 1, thus when d = 1, we could switch the
term d%, which is valid in three dimensions, to dl—z as the problem is
now closer to describing two parallel planes.

There is a much more significant problem within distance calcu-
lations for two connected fractures. We recall that that the vector &
is computed by (199), and originates from the fracture propagation
axis x, that is the middle of the fracture, but not from the fracture
surface. Under most conditions, w << L, thus the slight deviation in
location on between the crack surface and centre should not matter,
but these fractures are interconnected so a small overlapping region
appears near the connecting junction. Properly modeling this region
is beyond the scope of our current problem formulation, thus m
is used here as a convenient approximation.

The effects of using m in (199), as opposed to d1—3, are shown
in Figure 75b. We expect that under most circumstances, the overall
difference in the value of o; should be indistinguishable, for both
of these strategies. Here, it can be observed that, for all considered
angles, the singularity at x — 0 is removed, but the influence o is
mostly apparent at shallow angles. This particular example uses L =

10, but with much longer fractures we should observe less difference.
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(a) Two fractures attached at an angle « in rela-
tion to each other.
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Figure 775: Two fractures connected to a common junction.
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5.2.3 Approximation tolerances, and fast square root

The recursive method for approximation of (199), described in Section
4.3, uses tolerance thresholds o7 eltol and Ufbswl to decide when to stop
recursion (206). The previously considered case of two close parallel
fractures, as shown in Figure 73, can be used to measure the effects
of the different tolerances on the final value of ;. The spacing is set
to 1, while L = 100, to increase the number of divisions needed to
achieve the desired accuracies. The results of such measurements for
three pairs of tolerance values are shown in Figure 76. The baseline
comparison is obtained from the result wheno} eltol — (Tl”bsml = 10712,
Increasing the tolerances to (T[e“"l = 1074, Ulabsml = 108 reduces the
accuracy but to a level comparable with ¢7¢! = 1073, g#bstol = 10-6
when considering the proximity of end interval points x = 0 and
x = 1. However, further increases to ¢} eltol — (=2, (Tl“bswl = 10*
result in unsafe relative values of do; that exceed 1072, thus less strict
tolerances should not be used.

Our motivation for seeking optimal values ¢7°*! and ¢! is that
more recursive tests are needed to find (199) for lower tolerances, con-
sequently causing more expense in time. Since the general accuracies
of this multifracturing model are unlikely to be greater than 10~° (see
Subsection 5.3.2 ), using methods of higher accuracies could be seen
as a waste of resources. Meanwhile, finding other means of acceler-
ating this elasticity calculation may prove to be more beneficial for
overall performance.

An additional improvement can be implemented by tweaking of
the inverse square root seen in (199),

1 1

PE —>d:\ﬁ W (251)

Interestingly, the majority of this work thus far could be imple-
mented only by numerical additions, subtractions, multiplications
and divisions. The whole pseudo-elasticity scheme described in Sec-
tion 4.3 does not require any complex arithmetic operations, except
for the root /x required to calculate the distance d. The simplest ap-
proach for this is to use the existing native sqrt() function, available in
all programing languages. This function, however, has one significant
disadvantage: its accuracy is extremely high, where the time cost can
be in hundreds of CPU cycles. Unfortunately, v/x will be used a lot
in this multifracturing problem, but there are other works where the
issue of the native sqrt() performance was addressed.

A number of 3D graphics problems require massive repeated cal-
culations of surface normals, which can be accelerated by the fast
approximation of the inverse square root, a method which is very
well described in a blog by Hansen [32]. This fast inverse square root
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t

a{eltol — 10—2’ U.Zreltol — 10—4 1.00
O_Zreltol — 1073,0_17'eltol — 1076 1.09
O.Ireltol — 10—4[ U.er:ltol — 10—8 1.31

one iteration fast - 0.82
e

two iterations fast - 1.01
e

Table 10: Relative time consumed when computing ;. The alternative calcu-
lations with fast % uses 07! = 1073 and g#bstol = 1070

approximation is based on bitwise operations using the “magic ” hex-
adecimal number 0x5F3759DF, an exploitation of floating point no-
tation bit properties, which is then followed by one or more Newton
iterations. The most influential code implementation of this algorithm
would be the one attributed to Cormack, and found in the Quake III
source code [36], but unfortunately the original source appears to
be unknown. Nevertheless, the fast inverse square root is of interest
here as it can be used as a replacement for the native sqrt() function
in (199). The almost endlessly repeated calculation of inverse distance
(251), makes this problem similar to the operation of a 3D graphics
engine.

In Table 10, the relative time differences resulting from different tol-
erances and square root methods are shown. Within one Newton iter-
ation, the approximation of ¢; using the fast’ % requires about 20%

less time than the less accurate native sqrt(), for o] eltol — 10-2, Ulabswl =

10~%. Furthermore, two Newton iterations using the fast square root
are enough to achieve the same results as the native sqrt() function,
but still save about 10% of computation time. These improvements
are not very large gains in performance, but they are given effectively
for free, and offer straightforward improvements in the whole scheme.
Naturally, many similar numerical tweaks exist, but this one was cho-
sen in particular as it adds an interesting transferable flavor.
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Figure 76: Relative discrepancies in 07, depending on the desired accuracies,
baseline 07! = 1078 and ¢! = 10712, The alternative calcu-
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5.2.4 Pseudo elastic influence 07, in some sample geometries

The method for resolving fracture visibility shown in Algorithm 3 is
rather complex, and some further tests are required to verify if the
produced results agree with expectations. In Figures 77, 78 and 79,
we present some structures which are comparatively simple to ana-
lyze. We will examine the arrangements of edges, and deduce what
the pattern of the corresponding visibility matrix would be. Conse-
quently, we can then check the output of algorithm 3 against these
empirical expectations.

First, we consider Figure 77. Here, six cracks are arranged such that
e3, e4 are in the center, and ey, 3, €5, €5 are on the outer edges of a short
array of fractures. This placement makes e3, e4 visible to all e, e2, e5, e,
which can be confirmed by the presented visibility pattern. Further-
more, the end tips of ej, e; are sufficiently long to extend beyond the
shadow of the center fractures, and are visible to the end tips of es, ¢
respectively. The value of o7 for the middle e3,e4, at x = 0, is double
of that for the outer ey, e, e5, ¢6, as the middle is influenced by the two
outer fractures, while outer segments only by the single middle frac-
ture. As the pair ey, e, is the longest, the end tips x = 1 are furthest
away form the rest of 07 sources, thus 0; is smallest at these points.
However, taking a closer look at o; for e, e;, we notice that the rate
of change slightly decreases near the tip, which could be related to
these tips also being exposed to influence from parts of es, es.

In Figure 78, a number of PKN segments are directly connected to
each other. The visibility matrix shows only full squares, as the frac-
tures are all fully visible to each other, or not visible at all. The effect
of min(d®,1) in (199) on ¢; can be well observed here. For the rela-
tively long e, the reduction in 0; occurs at relatively close proximity
to the crack tip x = 1. The distribution of ¢; is most affected for the
shortest e4. The importance of this issue is difficult to assess.

In Figure 79, we see a mixture of partially and fully visible intercon-
nected PKN cracks and pipes. Pipe segment e, as expected, is seen
by all the other edges but es and parts of e;, which is well reflected
in the visibility matrix . The presence of ey, e5 affects o; for ey, as a
local maxima near x ~ 0.5 can be observed. Even in such a small
test scenario, many more observations could be made. However com-
plex the pattern of the visibility matrix and distribution of ¢; might
be, the generic formulation for obtaining ¢; presented in this work
produces valid and consistent results, which is an achievement in its
own respect. Having verified the procedure for these examples, it is
reasonable to assume that other possible arrangements of fractures
will also be properly handled.
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Figure 77: Example visibility matrix
connected by solid pipes.
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Figure 78: Example visibility matrix and o7, for a set of connected PKN
cracks and pipes.
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Figure 79: Example visibility matrix and o7, a set of connected PKN cracks
and pipes with some partial visibilities.
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5.2.5 Power input in an array of fractures

In the work by Bunger [10], as previously mentioned in Subsection
5.2.1, they considered a specific scenario. A number N sc1re 0f dou-
ble wing fractures were placed in a parallel array over some interval
of fixed width Z . The work was conducted on Radial, KGD and
PKN geometry, and one of its goals was to approximate the number
of placed fractures that minimizes the power input required to main-
tain a constant pump in rate over time. That analytical work test can
be reproduced for the PKN model using the numerical methods in-
troduced in this work. We begin by defining the fracture spacing H,
and the individual pumping rate for each half fracture wingg

V4 qo

H = - j —= T
Nfrtzcture 1 mecture

(252)
which follow the test scenario proposed by Bunger [10]. In this case,
flow is assumed to disperse evenly to each fracture, resulting in the
same value of pumping § for each fracture. The power input of the
total array P(t), in Watts, is approximated by

Nfracture

P(t)= ), qp;luid(tlo)' (253)
j=1

Here, p?l 4ia(t,0) is the net fluid pressure at the inlet of each fracture,
which has to be evaluated via the junction pressure scheme as shown
in Section 4.2, so the total power input is proportional to the sum of
the fracture opening widths and the effective ;. The other parameter
values used in this scenario are

v = 025 u = 1,
E = 100 g = 01, (254)
ho= 20 o = 7x107,

All the above values are taken from the original paper [10], except
for Poisson’s ratio, which was set to a reasonable value. The results
of these tests are shown on Figure 80a, to be compared to the original
Bungers result shown in Figure 8ob. It is impossible to make direct
comparison of these two results, as the value of v is not known. Fur-
thermore, this work does not include formation toughness Kjc, and
so the energy required to break the rock structure is not included. The
general result, a minimization of the power input for a given number
of fractures, prevails. The fluid balance was maintained at at least
10~%, where no leak off was applied.
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(a) With the proper choice of the elasticity constant g (250), a very similar result
is obtained. The optimal value of Nty can be found.
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(b) The original analytical result by Bunger [10]

Figure 8o: Power input in an array of parallel fractures, vs number of frac-
tures. Although the exact value of output was not matched, the
saturation at some critical N fracture Was reproduced.
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5.3 NOTES ON IMPLEMENTATION
5.3.1 Java and OO design

So far, the formulation of this multifracturing problem has been made
with the Object Oriented approach in mind. This programing paradigm
is not much newer than the more conventional procedural style used
by C and FORTRAN languages. In fact, the first appearance of OO
can be traced back to the 1960s [63], while the widespread spread
of OO as the dominant paradigm took place in the mid 1990s [100],
as languages supporting this paradigm, including C++ and Java, be-
come available. Interestingly, as observed by the author, quite a large
number of academics, who were educated before OO became domi-
nant, do not use, nor attempt to use any of OO features in their work.
On the other hand, a number of the courses given by top universities,
and researchers from recognized institutions, do mix OO methods
with numerical models [73, 82, 53], as do various other practitioners.
We point out [? ] as a good reference on this topic. The multifracturing
problem is naturally suited to the use of objects to represent abstract
data. All the mentioned cracks, pipes, injection points and other ab-
stract structures are well addressed, if treated as objects, and the mul-
titude of other applicable functionalities such as rendering, collisions,
and data operations can be well handled within this paradigm. It
seems most practical to use some of the features of OO design.

Another question is that of which programing language to use in
implementing this work. There are two main challenges in this prob-
lem, those of maintaining sufficient performance and obtaining accu-
rate and reliable solutions. The single fracture formulation was made
in MATLAB, which performed sufficiently well in the single fracture
case, but has significant drawbacks when facing more complex prob-
lems. A good practical discussion on the usefulness of MATLAB for
any larger project can be found on stack overflow [88]. The domi-
nant opinion stated there is that although MATLAB is good for small
quick tasks, it is a bad choice as a general purpose programing lan-
guage and offers slow performance. Additionally, MATLAB is not
freely available, which would mean additional complications for the
release of any results as open source.

Having eliminated MATLAB as a feasible language for multifrac-
turing problems, we now outline other possible choices of program-
ming language. Traditionally, the heaviest numerical projects have
been developed in C/C++ or FORTRAN?. However, over the past
decade the most popular language has been Java [9o], which has only
recently lost prominence due to the advents of other similar compet-

In fact, FORTRAN is probably the oldest programing language one can still expect
to find in usage.
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ing languages (Python, C#, D). Despite many myths about Java perfor-
mance, there are a large number of publications that prove that in nu-
merical applications, including matrix operations, Java performs at the
same levels, or even better than C/C++ and FORTRAN based libraries
[71, 6, 5, 9]. Lewis made a notable study of this [50], which high-
lights pointers, garbage collection, and run-time compilation as some
technical explanation of why Java can perform better than C/C++.
Nevertheless, the performance gap between these languages should
not be the main factor in the choice of language.

The writing of well written and maintainable code is at least as
important as the numerical performance of the language3. Some lan-
guages are naturally better suited to this than others. We also cannot
expect someone with experience in one language to produce quality
code immediately after switching to a new one. If most of the pro-
grammer’s experience is Java related, than sticking with this language
would be the most consistent choice in a limited time frame. Fur-
thermore, Java has unquestionably superior capabilities (stack trace,
portability, exceptions) when it comes to code stability and reliability.
Consequently, the final decision was made to solve the main part of
this multifracturing problem in Java. This discussion is intended as a
brief outline of the decision making process, where the general rea-
soning is made clear. There are some drawbacks to this choice, but
none of them appear significant enough to be mentioned here.

The constructed object orientated structure should also be men-
tioned here, in these notes. Figure 81 represents a simplified UML
diagram. The design principles and terminology involved here are:

¢ The ODE Interface states methods that would be expected from
a set of ODEs to be operated by an arbitrary ODE solver. These
include getting initial value (98), the integrated derivative (99)
and setting solution (100). It is implemented by Edge, that ul-
timately handles a single fracture, and Model, that combines
all fractures outputs (Algorithm 4). The result is fed to Solver,
turning this part into Builder pattern.

* Abstract Solver is used by Multifracturing, which is the main
class that logically advances the whole model in time (Algo-
rithms). The numerical work of integration is however done by
extensions of Solver, which serve as Bridges. Multiple versions
of ODEs solvers can be used here, as shown in the next Subsec-
tion 5.3.2.

* Model acts as a Facade, that decouples most of the detail away
from the main Multifracturing class. A separate instance of Model
for each State corresponding to multiple t = {fo, ..., t,nq} is held.
(or at least an attempt to compute these is made).

3 Basic Computer Science principle.
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¢ There are Ny number of Vertexes and Ng number of Edges held
by Model. Each Edge has two Vertexes, while each Vertex can
have many, or none Edges. This represents a graph.

* Edge is extended by multiple classes, that represent the actual
physical objects. These eventually properly implement Interface
ODE methods. These can ultimately rely on different implemen-
tation of operator A (32), (65) and (77), and combinations of
derivative approximation techniques (125), (136), (149) or (125).
The assignment of these could be done by a Factory, but for
keep some simplicity this pattern is omitted on Figure 81 and
only a few possibilities are shown. An important advantage of
this solution here is that further implementations of Edge can
be integrated into the rest of this structure. Other fracturing ge-
ometries, especially the KGD model that can abstracted into a
line connection between two points, should fit without the need
to alert any other of the code, if made compatible with the junc-
tion strategy (Section 4.2) and described as a system of ODEs.

* Additional Classes used by Multifracturing hold specific func-
tionality for collisions (Section 4.4), global and configuration
variables, and do other tasks such as data handling and ren-
dering.

* The Utility Matrices specified in Subsection 4.5.2 are also decou-
pled from the Model, to spread the functionality over even more
classes.

The code for some of the classes presented here is available in Ap-
pendix A.5
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Figure 81: Simplified UML design diagram, general class structure of multi-
fracturing code.
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5.3.2  Comparison of ODE solvers

Having formulated the design in such a manner that the underlying
solver is in fact just an abstraction, it is possible to switch to any of the
utilized integration code with a single switch command. A separate
bridge is prepared to deal with each method. Most of these rely on
JNI# to access native C code.

5.3.2.1  GLS (GNU Scientific Library ) ODE Solver

The GNU Scientific Library [89] is a collection of numerous numerical
libraries available under GNU public license. These libraries cover all
major numerical tools, which include solving initial value problems.
The particular function used here is gsl_odeivz, which allows a choice
in the type of method used. These include a range of Runge-Kutta,
Adams and BDF (95) methods.

5.3.2.2 LSODE

LSODE was developed by NASA [79] and released as a publicly avail-
able ODE solver based on BDF (95) methods. The solver has a long
history and is available in different versions. The particular variation
used here is borrowed from [51], as this particular C based implemen-
tation is condensed well into one package, containing all the needed
additional BLAS functions.

5.3.2.3 Intel ODE Solver Library

The newest solver among considered in this work, as developed by
Laevsky [47] at Intel. Although the project is discontinued, the solver
is still available for use. This solver combines both explicit methods
for non-stiff problems, and implicit methods for stiff solver, and can
switch between each method depending on the difficulty of a given
problem.

5.3.2.4 ODE15s

At an earlier state of development of this software, a successful at-
tempt to use MATLAB ODE15s solver was made. Unfortunately, the
process of calling MATLAB from Java is not straightforward. While
the reverse type of call, accessing Java code from MATLAB, is made
extremely easy with built in features, the only way to access ODE15s
that was found was through some open source bindings [22]. This did
work, but exposed several flaws in MATLAB. The biggest is the re-
liance on its own internal JVM, which in case of used bindings meant
all sent objects needed to be serialized and transferred between two

4 Java Native Interface
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running JVMs. This alone would not be a huge issue, but the MAT-
LAB R2013a version of Java was 1.6, while the developed code already
relied on Java 1.8 functionality. This meant that keeping backward
compatibility with ODE15s was not feasible at later stages. The accu-
racy and performance of ODE15s, when the code was still compatible
with Java 1.6, was at the same levels to those obtained by LSODE or
GLS solvers.

TEST ON ZERO LEAK OFF SELF SIMILAR SOLUTION. We can now
make a comparison of several available solvers. These solvers were
tested on the same basis of a zero leak off self similar solution (see
Appendix A.2.2). We made the test with N = 11, which is a very small
number of grid points, and thew system formulation (32) with the im-
proved spatial discretization scheme (149) and Junction strategy BC
4.2 was supplied to the solvers. A double power grid ) (264) with
0s = &p = 2.5 was used. The test proved that the abstraction in the
solver implementation works, and allows us to easily interchange the
integrating algorithm. This opens the future possibility of switching
solvers on the fly, depending on their performance, or even to try an-
other algorithm if one fails at some stage of the multifracturing sim-
ulation. Comparing results (Figure 82 and 83), we can conclude that
the Intel ODE solver and LSODE obtained nearly identical results
in terms of accuracy for crack opening w, and Intel ODE performed
about an order of accuracy’>better when computing fracture length L.
However, the time needed to obtain the solution was about 5 times
longer for the Intel ODE solver when compared to LSODE. The third
shown solver GSL ODE performed worse by and up to two orders of
magnitude, which can be associated with the visible struggle (sharp
edge on 83a) to progress near the crack tip. The time needed by GLS
was about 30 times greater than that of LSODE in this test, most signif-
icantly, 10-30 times more iterations were observed in the comparison
made between [51] LSODE and GSL solvers. These results suggest
LSODE should be the default solver for most of the scenarios, as it
offers the best performance, but the other solvers might still be used
if any difficulties are encountered.

5.3.3 Code optimization and parallelization

We recall from the definition of an initial value problem (94), that the
y" used in the multifracturing problem (239) is

ving (by) = {F1(t, M), Fy(t, M), . T (EM)L (255)

These accuracies are about two orders better than those presented in Mishuris at [64]
for dynamic systems, and can compete with the integral solver and straightforward
algorithm.
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Figure 82: Relative crack length error dL for the zero leak off solution ob-
tained with various ODE solvers.

Since all the F/ here are independent of each other, the function y’
is data parallel, and can be trivially split into any number of threads,
each working on a piece of the whole i’. A convenient approach is to
allow each edge F/ to be assigned to one thread. Hence, a problem
with N edges could be effectively split into N threads,

vin (by) = Filt, M), Fo(t, M), ..., Fi (K, M) 5. (256)
thread 1 thread 2 thread Ng

Since the current implementation is Java based, and executes com-
mands on the local CPU, a simple loop that assigns each edge to one
local worker is used. With the Lambda expressions introduced in Java
1.8, the task is even easier to perform. A multifracturing problem is
likely to have tens, if not hundreds of edges involved, which number
would be greater than the available number of hardware threads, so
this simple division of work is likely to achieve a fair balance without
adding too much parallel overhead.

The simple parallelization of y’ described above does not solve the
problem of optimizing the Jacobian pattern. Previously, in Subsec-
tion 4.5.2, it was shown how the Jacobian matrix pattern can be con-
structed, which would be used in a custom Jacobian function. First,
let us make another version of (239), that operates on the global grid
point index igjop, ranging from 1 to Noge,

yi..NODE(t/ y) = {fl/(t/ M)/ ]:2,(tr M)/ “'FI,\]ODE (t’ M)}/ (257)
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(a) GNU Scientific Library ODE solver

100

(b) LSODE

(c) Intel ODE Solver Library

Figure 83: Relative crack opening error dw for zero leak off solution obtained

with various ODE solvers.
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where .7-"1’g .y, translates to Fi ..., by (237). Hence, .7-"1’g .,y TEUTNS a sin-
gle point, as opposed to a vector value. Now, when calculating the
Jacobian, it is possible to make the approximation based on only the
non zero values,

ot M), = F (EMAA :
m( ) A”m( 11), lf ]puttewz mn = 1,

0, lf ]pattern mmn — 0.

The Jacobian approximation is also a parallel data operation that
can be split into a number of threads. The term A, refers to a small
change in a single element of a vector, so vector M + A, is different
from M by a small change in one element. This change can be done
in a single thread, so ], is split into Nopg streams, one for each
column n.

Figure 84 shows the computation time gains on a sample multifrac-
turing system achieved via code parallelization and Jacobian matrix
patternization. The acceleration can be over 2 orders of magnitude,
which in practice means that a problem that would take an hour to
solve could take less than a minute to solve with proper code im-
plementation. Thus, these relatively simple techniques can make a
difference between a solution that gives a result, and one that is still
running. Indeed, even though the ODE solver code remains serial,
the whole code achieves over 80% CPU usage on a quad core iy (8
threads), which translates to at least 5 times less running time.

These reductions in running time are very specific to this imple-
mentation, but similar gains could be achieved in other problems.
Some of the previous tests done in this work could not be finished
in a sensible time if no computational optimization of any kind was
made (see Section 3.3 and Subsection 5.2.5).

]m,n =
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Figure 84: Performance gains with various computational techniques. A dif-
ference of several orders of magnitude can save hours of real life
time.
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5.4 TEST SCENARIOS

5.4.1  Collision: crack to natural fracture, uniform ops
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(a) A fracture collides with natural fracture and produces three new openings.
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(b) Lengths of fractures and relative fluid balance with respect to time.

Figure 85: NF collision g =0.143, k=4, m=1, gqo=.5, ox =1, 0y = 1
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5.4.2 Collision: crack to natural fracture, uneven oy
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(a) A fracture collides with natural fracture and produces three new openings. The differ-
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(b) Lengths of fractures and relative fluid balance with respect to time.

Figure 86: NF collision g = 0.143, k =4, m =1, qo = 5, 0x =22, 0y =1
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5.4.3 Collision: crack to other hydraulic fracture
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b) Lengths of fractures and relative fluid balance with respect to time. Note the conver-
g P
gence to different asymptotes.

Figure 87: NF collision g =0.143, k=4, m=1, gqo=.5, ox =1, 0y = 1

5.4.4 Tree like fracture structure

Consider the following example geometry, organized in a binary tree
shape as shown in Figure 88. The top node is a junction (Section 4.2)
with a pump in rate g9 = 1. There are then four consequent depth
levels. The first three levels split the flow through connected PKN
pipe segments (Subsection 4.1.4), and the deepest level represents an
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array of PKN cracks (Subsection 4.1.3). For the purpose of this test,
the crack stress influence is ignored, 0; = 0, and back stress compo-
nents are set equal 0y = 0y, 8O there should be no preference in flow
direction introduced by stress differences. The structure is therefore
constructed in such a manner that the flow should be equally dis-
tributed to all end PKN crack segments. The initial opening w, and
length I, for each of used crack segments is set to match the zero leak
off benchmark solution, (see Appendix A.4.10), and to have w, =1 at
x = 0. The pipe segments are set up such that w,(x) = 1 for all values
of x. This distribution of initial w.is not chosen as a natural state, and
should introduce some extra initial error, however the multifracturing
scheme should be able to deal with this additional challenge in the
problem. This test should be run with zero leak off q; = 0.

The results of the computations run on this structure are shown in
Figure 88, where two effects can be observed.

First, the behavior of the end crack segments, at large times, can be
characterized by a large time asymptote for the zero leak off solution.
This is a trivial result by itself, but it verifies that the pump rate go = 1
at the first junction is distributed evenly to all end cracks segments,
so that each effectively receives gy = §, as there are eight end crack
segments it this scenario. This proper distribution of fluid is achieved
once the length of the end fracture segments is much greater than the
combined lengths of the distributing pipe segments.

The accuracy is most significantly affected by the choice of grid
type (Appendix A.1) and number of grid points N per crack and pipe
segment. In this scenario, four combinations of grid points per crack
segments N, pipe segments N, and the density parameter 7 in the

double power grid xﬁf ) (264), are used. The value of y referred to here
affects the points density near junction segments, not in the proximity
of crack tip. Therefore, the test where v = 1 refers to actually using a
uniform grid x,(,} ) over majority of the structure, while the other three
tests with ¢ = % have denser meshes near junctions. The number of
crack grid points is set to N; = 11, as it does not appear to have a
significant effect on the accuracy (as observed for fractures in Section
5.3.2).

This early experimental result, as a general observation implies that

(4)

using x,,” with v > 1 allows better accuracies than using a uniform
mesh x,(r} ) for pipe segments. The number of pipe grid points N, can
be decreased after time, when the length of pipe segment becomes

insignificant.
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(b) The lengths of the end crack segments converge to the large time asymptote. Inset:

Fluid balance accuracies for various combinations of pipe grid type and point number
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P

Figure 88: Test on a tree like structure, g0 =1, q; =0, 0x = oy, 0 = 0, k=
4 M=1
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6.1 GENERAL SUMMARY

There were two main goals in this work. The first goal was to study
and improve the existing PKN model, while the second was to de-
velop a working multifracturing solution based on this model.

Using a mixture of recent improvements, forgotten computational
techniques, and some of our own additions, it was possible to con-
struct and implement an improved formulation for this classical model.
The overall accuracies were always at least 10~2, up to 10~° in some
more specific cases. Additionally, the computation time needed for
these single fractures was always kept at reasonably low levels. The
two term asymptotic boundary condition proved to be especially ben-
eficial in the single fracture formulation, as it not only allowed us to
adequately tackle the degenerative PDE at the crack tip, but also pro-
vided an accurately approximated first asymptotic term, to be used
later for the fracture velocity, finite differences and integration. It was
shown that the proper choice of dependent variable offers substantial
advantages, although more improvements might be achieved with
proper discretization, derivative approximation and spatial mesh choices.

The procedure for a single fracture was tested on a wide range of
initial conditions, such as different leak off types, storage, receding
and propagating regimes, various pump in rates and initial shapes.
It was proven that it is possible to obtain an accurate numerical solu-
tion for a great majority of possible combinations of these conditions,
although in some cases it was necessary to make some additional
extensions to the original formulation, to properly account for previ-
ously unforeseen circumstances.

The second goal of building a multifracturing model proved to be
much more challenging. Although the PKN model neatly serves its
purpose, it is, just like other theoretical fracturing models, very lim-
ited in its scope and grossly oversimplified. If a single fracture model
is to be called a multiphisics formulation, then a combination of these
should be treated as a “grand” multiphisics problem. Not all of the
possible issues were addressed or resolved here, as rock toughness,
propane transportation or thermal effects were left to future work, for
simplicity’s sake. The achieved primary task was to build a multifrac-
turing model with open 2D geometry and fracture interactions, both
pseudo elastic and derived on the assumption of the presence of natu-
ral fractures. This derivation of new governing equations and bound-
ary conditions had to adequately handle multiple fractures. The al-
gorithms developed for obtaining numerical solutions for single frac-
tures were also eventually superseded, to deal with the growing size
and complexity of the calculations. Furthermore, it was necessary to
consciously design software capable of dealing with multiple frac-
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6.1 GENERAL SUMMARY

ture hydraulic simulation, using appropriate programing techniques
as well as the derived mathematical formulation.

The culmination of this work is a study into the theoretical formu-
lation and practical basis of the construction of a relatively simple
but powerful hydraulic fracture simulation program, that can han-
dle a wide range of possible hydraulic fracturing treatment scenarios.
The task is by no means yet complete, but rather works as a proof
of the concept that, by using the one dimensional formulation, it
is eventually possible to build a comprehensive solution that could
compete with its commercial counterparts. A variety of mathematical
techniques ranging from asymptotic analysis, through numerical inte-
gration, and finally to computer graphic and vision algorithms were
used. This thesis therefore touches on several fields, all of which were
applied to solve strictly mathematical hydraulic fracture problems.
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6.2 FUTURE WORK

There are a large number of possible future projects that could follow
this work. The following ideas and concepts are amongst those that
would be most manageable and interesting in future projects.

The newly introduced () variable was shown to be beneficial in
a number of specific cases. However, as it requires extra com-
putation, it was dropped from the multifracturing formulation.
Nevertheless, some improvements tested on the w and U vari-
ables could be used with ), as could a modified version of the
multifracture formulation. Such a formulation might even bring
further accuracy improvements.

The speed equation formulation was constructed with strictly
propagating fractures in mind. Another formulation could be
developed that would be designed for closing fracture. This
would have different expressions for tip asymptotics, and use
a sort of reversed speed equation.

More physical properties could be included in the formulation,
such as rock toughness, thermal expansion, or viscosity effects
and proppant transportation.

A more dynamic approach to mesh sizes could be considered.
Currently the mesh sizes are fixed, but each fracture could be
assigned a different number of grid points. This could increase
local accuracy in a few crucial fractures, or improve the overall
performance by decreasing the grid density in some less impor-
tant areas.

So far, we have only considered one dimensional leak off mod-
els. In reality, the fluid flow around the hydraulic fractures should
be modeled independently by 2D or even 3D porous flow sim-
ulations. This could be achieved by some coupling of the Darcy
law flow solutions with the developed multifracturing model.

Proper testing on real life hydraulic fracturing data should be
performed. This would require access to actual drilling logs,
including microcosmic data, which would allow attempts to
match the theoretical model with some real outputs.

Finally, a larger project should exploit the fact that, as observed
from initial condition and multifracturing tests, all fractures
eventually converge to large time asymptotes. Furthermore, the
computations are very repetitive. Having computed a solution
for a single fracture in a set of specific conditions, it would be
reasonable to assume that this solution can be copied for other
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fractures developing in similar conditions. Thus, for a multifrac-
turing model, it could be possible to create a precomputed table
containing a range of sample solutions, for different go values,
and then just use the closest matching solution instead of repeat-
ing another computation for each new slightly perturbed frac-
ture in the multifracturing problem. Such an approach would
allow for huge problems to be computed instantaneously. The
result would be a fairly accurate result, with a fine table resolu-
tion and some error correction techniques, which could be used
in treatment optimization algorithms where the placements of
multiple wells must be checked in order to find the most prof-
itable solution.
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A.1 GRIDS

All grids assume spacing of a number N of points in an interval of
% € [0,1 — €], with some small value of €.

UNIFORM GRID
Y =1 -ek/N, k=0,1,..,N. (258)

The simplest possible grid, divides the interval into N equally spaced
points.

POWER GRID

xﬁ?(&)zl—(l—(l—s%) %)5, m=1,..N. (259)

This grid has the benefit of being denser in the proximity of the crack
tip, where the solution for the problem is harder to obtain, and there-
fore allows for greater accuracy *. The value of the parameter J should
be chosen such that the problem stiffness is minimized. In Section 3.1,
it is shown that the optimal value is roughly § = 2.5

EXPONENTIAL GRID
x,(i’) = tanh(ak), k=0,1,.., N. (260)

This is a modification of the exponential law, where the parameter a
is given by
_ tanh(1 —e€)

a= — N (261)

Again, such a grid has the benefit of being denser in the proximity of
the crack tip, where the solution for the problem is harder to obtain,
and therefore allows greater accuracy.

DOUBLE POWER GRID

Ja
Xa(0)) =1 — (1 - (1 - (2e)$) m) L om=1,.., ng +1, (262)

5
Jp
m N
Xb((Sb) =1- (1 — N> , m= 1,..., LEJ + 1, (263)
7]
1—x N
x,(n4): 2 m<L2J+1 m=20,.., N. (264)

2ty om> 5]+

1 As proved by countless tests with non regular meshes.
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A specially designed grid to be used in the case of multifracturing. It
is a composition of two power grids, and has the same advantage as
the single power grid with respect to extra accuracy in the tip region,
and adds extra accuracy at the crack inlet. The parameters have values
d; = 2.25 and 6, = 1.5. This mesh has the disadvantage of working
only for odd values of N, although this is not a major problem.

09 B
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0.2 x%) H
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N

Figure 89: Comparison of used grids.
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A.2 BENCHMARK SOLUTIONS

There are several benchmarks available in the literature, that can be
used in the investigation of our numerical algorithms. Benchmark so-
lutions for impermeable rock have been constructed in [38, 54], while
whose corresponding to the non-zero leak-off model, with ¢q; vanish-
ing at the crack tip, have been analyzed in [65]. The large time asymp-
tote for the Carter problem was given by Nordgren in [70]. This work
is tested against three types of solutions.

A.2.1  General benchmark

To simulate three types of leak off, a procedure for obtaining analyt-
ical benchmark solutions representing each one of the behaviors (21)
was obtained. Moreover, for each of the leak-off functions two dif-
ferent proportions of injection flux rate qo and leak-off to formation
q; were considered. In total, we therefore had six distinct analytical
benchmarks.

The procedure for obtaining these starts by assuming the following
form for the crack opening function,

w(t,x) = Wo(l +0)Th(x), Wo={/2@7+1),  (63)

where <y is an arbitrary parameter, and the function i(x) (0 < x < 1)
is given by

h(x) = (1= x)3 + by (1= x)™ +by(1 — x)™2. (266)

The choice of the next powers 1/3 < A; < A will depend on the leak-
off variant in (4). On consecutive substitutions of (265), (266) into (19),
(24), (29) and (31), one obtains the remaining benchmark quantities,

Lm:u+f¥,v@@:—wa+f%Wm%, (267)
() = W1+ 0% (05 Lo (268)
qi(t,x) = Wo(14 )71, (269)

(2(37 +1) [;xgz + 312 (gi)z + hﬁiﬁ] - fyh>.

It can be easily checked that for Ay = 1/2 and A, = 4/3, the leak-
off function incorporates a square root singular term of type (21)(1).
By setting Ay = 5/6 and A, = 4/3, it complies with representation
(21)). Although in both cases (1) exhibits a singular behavior at
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the crack tip, it does not affect the applicability of these benchmarks.
Finally, when using A1y = 4/3 and A, = 7/3, this benchmark gives a
non-singular leak-off function (21)@).

Note that by manipulating the value of 7, we can simulate different
crack propagation regimes. For example, v = 1/5 corresponds to a
constant injection rate, while v = 1/3 results in a constant crack
propagation speed. For this work, we shall use v = 1/5.

Choosing appropriate values by and b, affects the difference be-
tween the fluid loss and the injection rate. This ratio is defined by
Qi/4q0, where Q; is the total volume of leak-off fol g;dx. This measure
decreases in time, from its maximum value to zero, for all chosen
benchmarks. Thus, taking the maximum value and tracing the solu-
tion accuracy in time, we can analyze the algorithm’s performance for
all probable values of this ratio. The first considered value of Q;/qo
corresponds to a fluid injection rate double that for total fluid loss,
the second to total fluid loss being close to the injection rate. The
values of corresponding parameters by, b, are presented in Table 11.

Q1/q0 =109 Q;/q0 =0.5
ql(l) ql(Z) ql(3) ql(l) ql(Z) ql(3)

01 (019 ] 074 |0.02|0.03| 0.15
05 (041 | -013 | 0.1 | 0.08 | —0.02
Yo | 1.69 | 1.70 | 1.65 | 0.55 | 0.56 | 0.55

Table 11: The values of parameters b; and b, for different benchmark solu-
tions corresponding to desired leak-off to fluid injection ratios.

Additionally, a parameter <y,, defined in [65], which measures uni-
formity of fluid velocity distribution, can be computed as

-1
7o = [max(V(t,x)) — min(V(t, x))] [/Olva,g)dg] . (270)

Interestingly, this measure is directly related to the leak-off ratio Q;/qo.

In Figure 9o, the distributions of the leak-off functions and corre-
sponding particle velocities for their respective benchmarks are pre-
sented. Velocities near the crack tip differ depending on the bench-
mark variant. To highlight this phenomena a close up view is shown
in Figure 9o (c).

Note that the benchmark ql(l) appears to be more difficult than the
original Carter model, as it contains additional singular terms of the
leak-off function. These terms are absent in the normalized Carter
law, as follows from Subsection 2.2.1.
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(@) (b)

Figure go: Distributions of the leak-off functions ¢;(t, x) and the respective
particle velocity V(t,x) over x € (0,1) at initial time t = 0.
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A.2.2  Zero leak off Self Similar solution

In the paper by Linkov [54], the following self similar solution is
presented,

w(t,x) = wah(x) P (a+ Y5, () = Cxn(a+ 15, (271)

where function h(x) is given by

:Z: (1—x) (272)
=1

This expansion converges rapldly, thus only the first five terms
shall be considered,

bp = 1,
1
bl = - E'
by = — %blf (273)
by = — %bz,
11
by = — @bg

The remaining parameters take the values

& = 1.3208446(q0/q1)"°,

w, = 1,
x, = 1,
dn = 1/

which correspond to k =4 and M = 1.

This benchmark is particularly useful if testing without proper im-
plementation of the leak off function. Since five terms are used, it is
not necessarily easier to compute than the three term general bench-
mark shown in the previous Appendix (A.2.1).

A.2.3 Large Time asymptotes

The large time asymptote for Carter Law q, (4) was given by [70],

L(t) =~ 2%\/5, t — oo. (274)
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By assuming a separable variable form, the large time asymptote for

the pressure proportional Carter Law ql(z) (4) can be numerically ap-
proximated, by correctly guessing that exponential functions are in-
volved. The apparently exact approximation is

0.6
L(t) ~ %t“, t— oo. (275)
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A.3 INTERPOLATING AND INTEGRATING FRACTURES

For the multifracturing problem, it is necessary to have a procedure
for both integrating and interpolating the crack and pipe segments.
This need arises for two reasons:

e First, when computing the fluid balance equation, the volume
of the fractures needs to be found;

* Second, various crack collision and splitting events require un-
known intermediate width values, that must be found by inter-
polation of the known width data on a discredited grid.

We consider three strategies for the interpolation: linear, cubic and
cubic Hermite splines. All of these, however, result in the construction
of a piecewise polynomial. Such a polynomial for a grid of N points
divides it into N — 1 intervals, and for each of these, such values of
a;,b;, c;, d; are found that

Si(x) =d;(x — xi)3 +ci(x— xi)2 +bi(x — x;) +a;, (276)

where S;(x) is a polynomial piece for each of the N — 1 segments.
In the case of a linear formulation, ¢; = 0 and d; = 0, for all i. To
find a;, b;, c;, d; some numerical work must be done. This is trivial in
the linear case, but for construction of the cubic polynomial some
well known interpolation algorithm can be used (such as [46]). The
Hermite version of the cubic is obtained via the MATLAB spline()
function. Yet another variation to spline construction is clamping. A
cubic spline can be constructed with a natural boundary, the first
derivative at the beginning and end of the interval being set to zero,
or to some desired value, which results in a clamped spline.

To obtain the value of a piecewise polynomial at some arbitrary
point x € (0,1), that is to extrapolate a value, we must find the in-
terval x; < x < x;y; which contains the piece S;(x) that must be
used. Since the values of x; are sorted, the index i of the next lesser
value than given x can be found using binary search method. Doing
SO, an O(log2 N) search time is obtained, so the required search for
the appropriate piece of polynomial during an evaluation is not a
computational burden.

Once we know which segment i to use, we can then compute the
value of S;(x) via the following optimal form,

Si(x) =a;i+(x—x;) (bj+ (x —x;) (¢; + (x —x;)d})))),  xi <x < Xjy.

(277)
It is comparatively easy to find the integral of a cross-section of an

interpolated pipe or crack, by integration of the piecewise polynomi-
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als. Given an integration start point a and end point b, the integral of
Sz-(x) is

(x — x;) <L;i+(x—xi) <I;i+(x—xi) <4+(x—xi)‘f;>>).
(278)

We can apply this to the whole piecewise spline,

Xhtj+1

b x J b
/ wix — / S (x)dx+ )] S (¥)dx + / St jn (x)dx,
a a 0 xk+j

(279)
where w is the width of pipe or crack under integration. The values
of j and k are searched such that a < x; and x;,; < b.

Xk+j

ANOTHER TRICK WITH ASYMPTOTICS When dealing with a crack
and its width w.,., it is possible to obtain much better accuracy
when interpolating. The two term asymptotic representation of PKN
model fracture (15) can also improve the process,

flx) = A1 —x)* +B(1 —x)#, (280)

where the powers &, f and parameters A, B are obtained through
crack tip handling strategies (Subsection 3.2.2.2). Then, when interpo-
lating the polynomial S(x), we can do so over W« — f(x) instead.
The value of w(x), after interpolation for some point x, can then be
found as

w(x) = S(x) + A(1 —x)* + B(1 — x)P. (281)

This improves the accuracy of fab Werackdx, that is the accuracy of
finding the cross sectional volume of a fracture,

/ab WerackdX = /ab(wcmck — f)dx + /ﬂbf(x)dx, (282)

since f(x) can be easily integrated.

/abf(x)dx:(b—a) (wil—l-lBB_;l) (283)

Subtracting f(x) from wg, allows the major portion of the integral
to be done analytically, leaving the much lesser part to be computed
by numerical approximation. This allows for less error when obtain-
ing the volume and extrapolating width values.
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fol WerackdX fol (wcmck — f)dx +F fol wPiPde
linear 3.17e-03 3.34€-05 1.13€e-04
cubic 1.24€-04 2.22e-06 8.53e-06
cubic clamped 2.48e-04 1.22€-04 5.57€-06
Hermite 2.64€e-04 4.44€-08 1.17e-07
Hermite clamped | 3.24e-04 1.34€-04 5.84e-08

223

Table 12: Accuracy of integration of pipe and crack sections on a N = 10
point quadratic grid (for crack) and regular grid (for pipe). Clearly,
with as little as N = 10 points it is possible to achieve integration
accuracy of a few orders better than the expected accuracy of the
numerically computed w.

lo T
—— linear
—— hermitian
clamped hermitian
> '
10 | —— cubic ]
clamped cubic

(a) Pipe segment

10
-2
10
-4 /
10
3
S
10’6 linear
hermitian
clamped hermitian
cubic
d , clamped cubic
10° | (. \‘ ~ — linear + asymptotics
| :\“ i ”’ —— hermitian + asymptotics
| D u clamped hermitian+ asymptotics
\ D = cubic + asymptotics
‘10| Do clamped cubic + asymptotics
10 I I T T
0.4

0.6

0.8

T

(b) Crack segment

Figure g1: Relative error obtained while extrapolating midpoint values be-
tween N = 10 grid point, for the self similar solution based upon
pipe and crack segments. It is possible to achieve accuracy of 10~*
or better for most types of interpolants over the entire interval.
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A.4 MATLAB SINGLE FRACTURE CODE

A.4.1  Simple Running Script

11

16

21

26

31

36

41

46

$sample (simplified )running script
clear all;
clc;

a=1l;%initial time
t=[0 100]; %computation interval

epsilon=le-3;
N=100;

$%grid choice
% grid=RegularGrid (N, epsilon);

grid=ArcTanhGrid (N, epsilon);
grid=QuadraticGrid (N, epsilon);

%$choice of a benchmark
bench=BenchmarkSimilar (a);

%$object that hold all initial conditins
ic=InitialCondition(grid,bench);

$%derivative approximation choice
% diffs=FiniteDifferences (grid);
diffs=AsymFD (grid, ic);
diffs=Polynomial2nd (grid) ;

diffs=DiffSpline (grid);

o o

% methods for dealing with BC
left=1eftBCl (ic);
right=rightBCl (ic);

$setting up the sysem
sysl=CrackSystemW (ic, left, right,diffs);

$computation
tic

[sol]=sysl.solve(t);
toc

%$optional results ploting

[X, T]=meshgrid(grid.xi(1:N),sol.x);

figure

ww=bench.w (T, X);

mesh(X,T,sol.y(1:N,:)");

mesh (X, T,abs (sol.y (1:N, :) "-ww) ./ww) ;

figure

L=sol.y (N+1,:).".5;

plot (sol.x,abs (L-bench.L(sol.x))./bench.L(sol.x),'r")
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A.4.2  Crack system w variable

classdef CrackSystemW<handle

properties,
function_calls, xi,N,k,M, ...
left_BC,right_BC,ic,diffs;
end

methods
%$constructor
%ic set of initial conditions
%$left_BC used for BC at x=0
12 %$right_BC used for BC at x=1
$diffs used for dw/dx and d2w/dx2 approximation
function
this=CrackSystemW (ic,left_BC,right_BC,diffs)
this.N=ic.grid.N;
this.ic=ic;
17 this.left_BC=left_BC;
this.right_BC=right_BC;
this.diffs=diffs;
this.xi=ic.grid.xi;
this.k=ic.k;
22 this.M=ic.M;
end

function [sol]=solve(this,t_spam)
27
$reset function calls counter
this.function_calls=0;

n=this.Nj;

32 A=diag(ones(1l,n+1),0)+... S$tridiagonal part
diag(ones(l,n),1)+...
diag(ones(l,n),-1);

A(:,end-2:end)=1; $three extra columns
A(l1l,3)=1; %attributed to left BC
37
options =
odeset ('RelTol',1le-8, 'AbsTol',1le-8, ...
'Jpattern’',A);

sol=odel5s (@ (t,w)ODE (this, t,w),t_spam, ...
42 [this.ic.w;this.ic.L_0"2],options);
end
47 function dw=ODE (this,t,w)

this.function_calls=this.function_calls+1;
%allows to escape form endless computation
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52

57

62

if(this.function_calls>100000)
throw (MException ('Id:id', "iterations
exeeded'));
end

% assign local variables
n=this.N;

L_t=w(end)".5;
x=this.xi;

%allocated output of operators A and B
${A_1,A_2,...,A_N,B}
dw=zeros (n+l1,1);

$computing derevative approximations
this.diffs.preset (w);
dwdx=this.diffs.calcFirstDer();

67 d2wdx2=this.diffs.calcSecondDer () ;
%getting boundary derevative values, and
asymptotics term w_0
[dwdx (1) ,d2wdx2 (1) ]=...
this.left_BC.get_left (t,L_t,w,dwdx,d2wdx2);
72 [w_0,dwdx (n),d2wdx2 (n) ]=...
this.right_BC.get_right (t,L_t,w,dwdx, d2wdx2)|;
$computes operator A
dw(l:n)=this.k/this.M/L_t"2.*dwdx(l:n).*w(l:n).
77 (1/3*%xw_0"3xx(1:n)./w(l:n).”3+3xdwdx(1l:n)./w
+d2wdx2 (1:n) ./dwdx (l:n))-this.ic.q_1(t,x(1l:q
%$computes operator B
dw (end)=2*this.k/this.M/3*w_0"3;
82
end
end
end
A.4.3 central FD

[ November 10,

classdef FiniteDifferences<handle

%$handle for computing Crack derevative

$central FD scheme with variable interval

%length is used

properties

end

D,F,

methods
function this=FiniteDifferences (grid)

G,N,grid,dy;
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28

33

38

end
end

‘A4 MATLAB SINGLE FRACTURE CODE

this.N=grid.N;
n=this.N-1;
dxi=grid.dxi;

$precompute constant parameters

this.D=dxi(l:n-1);

this.F=dxi(2:n);

this.G=1./dxi(l:n-1)+1./dxi(2:n);
end

function preset (this,y)
n=this.Nj;
this.dy=diff(y(l:n));
end

function fstder=calcFirstDer (this)
n=this.N;
fstder=zeros(n,1);
fstder (2:n-1)=1/2* (this.dy (2:n-1) ...
./this.F+this.dy(1:n-2)./this.D);
end

function secder=calcSecondDer (this)
n=this.N;
secder=zeros (n,1);
secder (2:n-1)=1/2+this.G.* (this.dy(2:n-1) ...
./this.F-this.dy(1:n-2)./this.D);
end

A.4.4 polynomial

classdef Polynomial2nd<handle
%handle for computing Crack derevative

%approximation where derevative at x_i is given by

2ax+b and 2a

%as approximated by ax”2+bx+c on points x_i-1,x_1i,x_1i+1
properties
NI gridlAleclElFldy;
end
methods

function this=Polynomial2nd (grid)
this.grid=grid;
this.N=grid.N;

$precompute constant parameters
n=this.Nj;

dxi=grid.dxi;
this.A=1./(dxi(2:n-1)+dxi(1:n-2));
this.B=dxi(l:n-2)./dxi(2:n-1);
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23

28

33

this.C=dxi(2:n-1)./dxi(1:n-2);
this.E=1./dxi(1:n-2);
this.F=1./dxi(2:n-1);

end

function preset (this,y)
n=this.N;
this.dy=diff(y(l:n));
end

function fstder=calcFirstDer (this)
n=this.Nj;
fstder=zeros (n,1);
fstder(2:n-1)=this.A.x(this.dy(2:n-1) ...
.xthis.B+this.dy(1:n-2).xthis.C);
end

function secder=calcSecondDer (this)
n=this.N;

38 secder=zeros(n,1l);
secder (2:n-1)=2xthis.A.* (this.dy(2:n-1) ...
.xthis.F-this.dy(l:n-2) .xthis.E);
end
end
43 end
A.4.5 spline

1

11

16

21

[ November 10,

classdef DiffSpline<handle
$handle for computing Crack derevative

$spline is constructed by spline() function

%and subsequently its derevative given by fnder

$is

used

properties

end

N, x,pp;

methods

function this=DiffSpline (grid)
this.x=grid.xi;
this.N=grid.N;

end

function preset (this,y)
n=this.N;
%$spline is constructed
this.pp=spline(this.x,y(1l:n));
end

function fstder=calcFirstDer (this)
n=this.Nj;
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fstder=zeros(n,1);

$function for first derevative

f=@ (x)ppval (fnder (this.pp, 1), x);

$evaluation over grid x

fstder (2:n-1)=f (this.x(2:n-1));
end

function secder=calcSecondDer (this)
n=this.N;
secder=zeros (n,1);
$function for second derevative

36 f=@ (x)ppval (fnder (this.pp, 2),x);
$evaluation over grid x
secder (2:n-1)=f (this.x(2:n-1));

end
end
41
end
A.4.6  Asym FD

22

27

classdef AsymFD<handle
%$handle for computing Crack derevative
%using 2 terms asymptotics.
$Asymptotic approximation is used to calculate most
%0of the wvalue, thous better accuracy is expected.
%The reminder is treated with central FD

properties

grid,N,Al,A2,B1,B2,xnl,xn2,alpha,beta,dy, £, fx, fxx, ..

A,B,C,D,F,G,xa, xb, xaa, xbb, xaaa, xbbb;
end

methods

$constructor grid, first asym power, second
asym power

function this=AsymFD (grid,ic)
%$assign grid, N
this.N=grid.N;
this.grid=grid;
a=ic.alpha; % first asym term power

(usually 1/3)

b=ic.beta; % second asym term power
this.alpha=a;
this.beta=b;
$working tip parameters for finding asym terms
x1=1-grid.xi (end) ;
x2=1-grid.xi (end-1);
this.Al=(x2"(a)-x2" (b) /x1" (b-a)) " (-1);
this.A2=—(x2/x1) " (b) *this.Al;
this.Bl=-this.Al/x1" (b-a);
this.B2=1/x1" (b)-this.A2/x1" (b-a);
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32

37

42

47

52

57

62

67

72

77

[ November 10,

this.xnl=x1;
this.xn2=x2;

$precomputing constant asym parameters
x=grid.xi;

this.xa=(1-x)."a;

this.xb=(1-x)."b;

this.xaa=-ax (1-x)."(a-1);

this.xbb=-bx (1-x)." (b-1);

this.xaaa=ax (a-1)* (1-x)."(a-2);
( x) .

this.xbbb=bx (b-1) % (1- M (b-2);

$precomputing constant FD parameters
dxi=grid.dxi;

n=this.N-1;
this.A=1./(dxi(2:n)+dxi(1l:n-1));
this.B=dxi(l:n— 1) /dxi(2:n);
this.C=dxi (2: ./dxi(l:n-1);
this.D=dxi(l:n- 1),

2

this.F=dxi(2:n);
this.G=1./dxi(l:n-1)+1./dxi(2:n);
end

function preset (this,y)
n=this.N;
$finds asym terms on 2 last data points
a=this.Alxy(n-1)+this.A2+y (n);
b=this.Bl*y(n-1)+this.B2xy(n);

$calculates asym based approximation for
$F dFdx and d2Fdx2
this.f=a*this.xa+b*this.xb;
this.fx=a*this.xaatb*this.xbb;
this.fxx=axthis.xaaa+b*xthis.xbbb;

$difference of asym approximation and
acctual value
this.dy=diff(y(l:n)-this.f);
end

function fstder=calcFirstDer (this)

n=this.N;
fstder=zeros (n,1);
fstder(2:n-1)=this.fx(2:n-1)... %asym

derivative term
+1/2x (this.dy(2:n-1)./this.F...%FD
derivative term
+this.dy(1:n-2)./this.D);
end

function secder=calcSecondDer (this)
n=this.N;
secder=zeros(n,1);
secder (2:n-1)=this.fxx(2:n-1)...%asym
derivative term
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+1/2*this.G.*... $FD
derivative term
82 (this.dy(2:n-1)./this.F-this.dy(1:n-2)./this.D);

end
end
end

A.4.7 regular grid

classdef RegularGrid
Suniform grid

properties
4 N, xi,dxi,epsilon;
end
methods
function this=RegularGrid (N, epsilon)
9 this.N=N;

this.epsilon=epsilon;
this.xi=linspace (0,1l-epsilon,N)';
this.dxi=diff (this.xi);
end
14 end
end

A.4.8 BCx=o0

classdef leftBC1l
$1leftBCl deals with BC at x=0

properties
5 a 0,k,M, x;
end
methods
function this=leftBCl (ic)
10 this.q 0=ic.qg_0;

this.k=ic.k;

this.M=ic.M;

%$the first 3 points are extracted
this.x=ic.grid.xi(1:3);

15 end
function
[dwdx_0,d2wdx2_0]=get_left (this,t,L_t,w,—, )
$pumping rate g_o is proportional to first
derevative
20 dwdx_0=-this.M/this.k*L_t/w(l)"3*this.q_0(t);
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25

30

35

x1l=this.x(
x2=this.x(
x3=this.x(
da=-1/2./(x2-x1);
db=1/2%(1./(x2-x1)-1/(x3-%x2));
de=1/2./(x3-x2);

%$aproximation of a special polynomial
d2wdx2_0=(-2/x2xda+4/x2+xthis.q 0 (t) *...

1);
2);
3);

this.M/this.k*xL_t*w (1) (-4)—-6xx2"-2)*w(1l)+...

(—=2/x2%db+6xx2" (=2) ) *w(2)+...
(—=2/x2*dc) *xw (3) ;
end
end

end

A4.9 BCx=1

13

18

23

28

classdef rightBCl
%$rigthBCl deals with BC at x=1

properties
Al,A2,B1,B2,xnl,xn2,N,alpha,beta;
end

methods

function this=rightBC1 (ic)

x1l=1-ic.grid.xi (end);
x2=1-ic.grid.xi (end-1);

a=ic.alpha;
b=ic.beta;

this.alpha=a;
this.beta=b;
this.xnl=x1;
this.xn2=x2;

this.Al=(x2"(a)-x2"(b)/x1"(b-a)) " (-1);
this.A2=-(x2/x1)" (b) *this.Al;
this.Bl=-this.Al/x1" (b-a);
this.B2=1/x1" (b)-this.A2/x1" (b-a);
this.N=ic.grid.N;

end

function
[w_0,dwdx_n,d2wdx2_n]=get_right (this,—, =, w,—, )
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48
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n=this.Nj;

$finds w_0 and w_1
A=this.Alxw(n-1)+this.A2xw(n);
B=this.Bl*w(n-1)+this.B2*w(n);

a=this.alpha;
b=this.beta;
w_0=A;

$direct result of differentiating asymptotics
dwdx_n=—-a*A*this.xnl” (a-1)+...
-bxBxthis.xnl” (b-1);

$direct result of differentiating asymptotics
d2wdx2_n=ax (a-1) *Axthis.xnl” (a=-2)+...
bx (b-1) *Bxthis.xnl” (b-2);
end
end
end

A.4.10 Benchmark Self-Similar

22

27

classdef BenchmarkSimilar
properties
alpha,beta,w,V,L,dL,g_1,int_g 1,9 _0,dwdt,Omega,k,M, a,
A,C,D,powers, sym_powers,L_inv,q _1_star,q_l_norm,d
Yb,YY,gl_star;
end

methods
function obj = BenchmarkSimilar (a)
obj.a=a;

k1=4;
ke=1;
q0=1;
an=1;
tn=1;

xn=( (klxke) /4)”~(1/5) *gn” (3/5)tn”~ (4/5);
wn=gn+tn/xn;

b0=1;

bl=-1/16;
b2=-15/224xbl;
b3=-3/80%b2;
b4=-11/5824xb3;
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32

37

42

x1_s5=1.3208446*(gq0/gn)*(0.6);

obj.Y¥Yb=0@(x)0.6*xxi_s"2x ((1-x)."(1)...
+b1/2% (1-x) .~ (2)+b2/3* (1-x) .~ (3) ...
+b3/4% (1-x) .~ (4)+b4 /5% (1-x) .~ (5));

Y=@ (x)0.6%xxi_s"2% (b0/1x (1-x) .~ (1) +bl/2+ (1-x)." (2)
+02/3% (1-x) .~ (3)+b3/4% (1-x) .~ (4) +b4 /5% (1-x) .
obj.YY=Y;

dxYb=Q@ (%) 0.6*xi_s™2* (...
-1 ...
+2x1/16/2% (1-x) .~ (1) +...
+3%x15/224%-1/16/3% (1-x) .~ (2) ...
+4%3/80%x-15/224%-1/16/4* (1-x) .~ (3) ...
+5%11/5824x-3/80%-15/224%-1/16/5* (1-x) .~ (4)) ;

47
obj.k=4;
obj.M=1;
obj.w=@ (t,x)wn=* (Y (x))."(1/3).*(a+t) .~ (1/5);
obj.dwdt=Q (t,x)1/5*xwn* (Y (x)).”(1/3) .x(a+t) .~ (-4/94

52 Obj.deX:@(t,X) “ ..

wn*1/3%x (Y (x))."(-2/3) .xdxYb (x) .* (a+t) .~ (1/5);

obj.q _0=@(t)g0;
obj.gl_star=0@(t,x) tx0+x%0;
obj.L=@(t)xi_s*xnx*(a+tt).”(4.0/5.0);

57 obj.V=@ (t,x)-obj.k/obj.M./obj.L(t) .*...

obj.w(t,x).”2.+0obj.dwdx (t, x) ;

obj.L_inv=0(x) (x./xi_s./xn)."(5.0/4.0)-a;
obj.alpha=1.0/3.0;
obj.beta=4.0/3.0;

62 obj.Omega=0@(t,x)quad(@(x)obj.w(t,x),1,x,10"-12);
obj.q_1=Q@(t,x)0+0*xt+0*x;

end
end
67
end
A.4.11 Initial condition

[ November

%$InitialCondition encapsulation of simulation

parameters
% includes various parameters that might be used
% a proxy to benchmark in this particular
implementation
properties

classdef InitialCondition

a,w,w_0,V,Omega,L_0,L_inv,k,M,q 0, ...
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g l,g 1 _star,g_1l_norm,int_qg 1,C,...
grid, bench, alpha, beta;
end

methods
function this=InitialCondition(grid, bench)

this.a=bench.a;
this.L_0O=bench.L(0);
this.grid=grid;
this.alpha=bench.alpha;
this.beta=bench.beta;
this.w=bench.w(0,grid.xi);
this.V=bench.V(0,grid.xi);
this.k=bench.k;
this.M=bench.M;
this.qg_O=bench.qg_0;
this.qg_l=bench.qg_1;
this.int_g l=bench.int_qg 1;
this.g_1l_star=bench.q 1l_star;
this.g_1l_norm=bench.qg l_norm;
this.L_inv=bench.lL_inv;
this.C=bench.C;
end
end
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A.5 JAVA MULTIFRACTURING CODE

The source code developed for the multifracturing scenario is avail-
able for download from GitHub at: https://github.com/morswinb
. It is still an experimental version, likely to change and evolve, so
please find any instructions and examples at the repository.
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